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From the Editors’ Desk
The beauty of mathematics often lies in mysterious and profound connections between seemingly
distinct areas of Mathematics. One of the many such instances is the connection between Number
Theory and Quantum Mechanics.�
The Riemann Zeta function in number theory is deeply connected with the distribution of prime
numbers. The non-trivial zeros of the function are conjectured to lie on the critical line with real
part 1/2 (the Riemann Hypothesis). Surprisingly, the statistical distribution of these zeros appears
to be the same as the energy levels of heavy nuclei in quantum mechanics (specifically, random
matrix theory). This suggests a deep, yet not fully understood, link between the fundamental
building blocks of numbers and the behavior of matter at the atomic level. The partition functions
of certain string theories in Physics are related to modular forms in Number theory, hinting at a
deep mathematical structure underlying the physical universe at its most fundamental level.
Brownian motion, the random movement of particles, can be described by stochastic differential
equations (SDE). Remarkably, the probability distribution of a Brownian particle at a given time
satisfies the heat equation, a fundamental partial differential equation in physics and engineering.
This connection allows us to use the tools of analysis (like PDEs) to understand probabilistic
phenomena and vice versa. For example, the Black–Scholes equation (a well-known SDE) estimates
the value of the financial instrument called option, over time in terms of the price of the underlying
asset.
One of the news items in this Issue describing current status of Hilbert’s 10𝑡ℎ problem, reveals
profound connections among Gödel’s Impossibility theorem in Mathematical Logic, Halting prob-
lem of Turing machines in computer Science, and impossibility of determining whether a given
Diophantine equation has integer solutions in number theory.
In the opening article, Prof. S. D. Adhikari discusses some early Ramsey-type results, demonstrat-
ing that when a large structure is partitioned into finitely many parts, at least one of these parts
retains certain regularity properties of the original structure, in the context of 𝑟-colouring of sets.
In Article 2, Dr. Sagnik Chakraborty gives a self-contained proof of the simplicity of the alternating
groups based on elementary considerations of orders of elements, avoiding intricate manipulations
with the class equation.
There are various coordinate systems on a sphere associated with a positioning of celestial ob-
ject. While the relations among them can be obtained using modern spherical trigonometry, one
also finds a detailed explanation of these in the twelfth century Indian mathematician Bhāskarā-
cārya’s magnum opus, Siddhāntaśiromaṇi (1150 CE). In Article 3, Prof. M. S. Sriram provides an
exposition on this theme.
In Article 4, Dr. D. V. Shah gives an account of significant developments in the Mathematical world
during recent past, including updates on ‘The Zero Height Conjecture’, Hilbert’s 10th problem,
Descartes Circle Theorem, ‘McKay conjecture’ and ‘Kakeya conjecture’. The article also includes
a brief write-up on important contributions of awardees of Leibniz Prize, and the 2025 Leroy P.
Steele Prizes in three different categories.
In Article 5, Prof. Dani reviews two recently published papers in History of Mathematics, one by
Dipak Jadhav and the other by Adrian Rice.
In the Problem Corner, Dr. Udayan Prajapati presents a solution to one of the two problems
posed in the January 2025 issue. Two new problems are also posed for our readers. Dr. Ramesh
Kasilingam gives a calendar of academic events, planned during July, 2025 to November, 2025, in
Article 7.
We are happy to bring out this forth issue of Volume 6 in April, 2025. We thank all the authors,
all the editors, our designers Mrs. Prajakta Holkar and Dr. R. D. Holkar, and all those who have
directly or indirectly helped us in bringing out this issue on time.

Chief Editor, TMC Bulletin
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1. Degree of Regularity of a Linear Diophantine Equation
Sukumar Das Adhikari and Sayan Goswami

Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, 711202, India
Email: adhikarisukumar@gmail.com and sayan92m@gmail.com

1.1 Introduction

For a positive integer 𝑟, an 𝑟-colouring of a set 𝑆 is a map 𝜒 ∶ 𝑆 → {1, … , 𝑟}. If 𝑠 is an element
of 𝑆, then 𝜒(𝑠) is called the colour of 𝑠. A set 𝑇 ⊂ 𝑆 is called monochromatic with respect to a
colouring 𝜒 if 𝜒 is constant on 𝑇 .

One observes that writing 𝑆 = 𝜒−1(1) ∪ 𝜒−1(2) ∪ ⋯ ∪ 𝜒−1(𝑟), an 𝑟-colouring of a set 𝑆 is nothing
but a partition of 𝑆 into 𝑟 parts.

In what follows, we shall be using the notation [𝑛] = {1, 2, … , 𝑛} and for a set 𝑆,
(𝑆

𝑘) will denote the collection of 𝑘-subsets of 𝑆. The set of integers and the set of positive in-
tegers will respectively be denoted by Z and Z+.

In the next section, we will discuss some early Ramsey-type theorems. The existence of regular
substructures within general combinatorial structures is a fundamental phenomenon that charac-
terizes Ramsey theory. Most commonly, we encounter results demonstrating that when a large
structure is partitioned into finitely many parts, at least one of these parts retains certain regular-
ity properties of the original structure. Additionally, some Ramsey-theoretic results establish that
sufficiently large substructures exhibit specific regularities.

In Section 1.3, we shall take up our main theme.

1.2 Some early Ramsey-type theorems

Schur [18] proved the following result in 1916, making it one of the earliest results in the field.

Theorem 1. (Schur’s Theorem ) Given a positive integer 𝑟, there is a positive integer 𝑆(𝑟),
such that for any 𝑟-colouring of [𝑆(𝑟)], ∃ a monochromatic subset {𝑥, 𝑦, 𝑧} of [𝑆(𝑟)] such that
𝑥 + 𝑦 = 𝑧. (The situation is described by saying that the equation 𝑥 + 𝑦 = 𝑧 has a monochromatic
solution in [𝑆(𝑟)].)

By a Compactness argument (see [11], for instance), the above result is equivalent to the
following.

Theorem 2. Given a positive integer 𝑟, for any 𝑟-colouring of Z+, the equation 𝑥 + 𝑦 = 𝑧 has a
monochromatic solution in Z+.

The classical Ramsey theorem [15], which appeared in 1930 and was later rediscovered by Erdős
and Szekeres [7] in 1935, can be viewed as a generalization of the pigeonhole principle. The theorem
originally appeared as a lemma in the above mentioned foundational work [15] on Mathematical
logic.

Theorem 3. (Ramsey’s Theorem) Given positive integers 𝑘, 𝑟, 𝑙(≥ 𝑘), there exists a positive
integer 𝑛 = 𝑛(𝑘, 𝑟, 𝑙) such that for any 𝑟-colouring of ([𝑛]

𝑘 ), there is an 𝑙-subset 𝐿 = {𝑐1, … , 𝑐𝑙} ⊂ [𝑛]
such that the elements of (𝐿

𝑘) are of the same colour.

After the result of Ramsey was rediscovered by Erdös and Szekeres, the branch of combinatorics
known as Ramsey Theory developed, and with hindsight, we can now see the unifying features of
the early Ramsey-type theorems, several of which appeared before Ramsey’s theorem, which are
seemingly unrelated.

We observe that Theorem [1] can be deduced from Theorem [3].
Take 𝑆(𝑟) = 𝑛(𝑘, 𝑟, 𝑙), where 𝑛(𝑘, 𝑟, 𝑙) is as in Theorem [3]. Now, any colouring 𝜒 on [𝑆(𝑟)]

induces an 𝑟-colouring 𝜒∗ of ([𝑆(𝑟)]
2 ):

𝜒∗({𝑖, 𝑗}) = 𝜒(|𝑖 − 𝑗|), 𝑖 ≠ 𝑗 ∈ [𝑆(𝑟)].
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By the definition of 𝑆(𝑟), ∃ {𝑎, 𝑏, 𝑐} ⊂ [𝑆(𝑟)], 𝑎 < 𝑏 < 𝑐 such that

𝜒∗({𝑎, 𝑏}) = 𝜒∗({𝑏, 𝑐}) = 𝜒∗({𝑐, 𝑎}),

that is,
𝜒(𝑏 − 𝑎) = 𝜒(𝑐 − 𝑏) = 𝜒(𝑐 − 𝑎).

However, (𝑏 − 𝑎) + (𝑐 − 𝑏) = (𝑐 − 𝑎). Hence the colours must coincide.

Another Ramsey-type theorem which appeared before Ramsey’s theorem is the theorem of van
der Waerden [20] which led to many interesting developments in combinatorics and number theory.

Theorem 4. (van der Waerden’s Theorem) Given 𝑘, 𝑟 ∈ Z+, there exists 𝑊(𝑘, 𝑟) ∈ Z+ such
that for any 𝑟-colouring of [𝑊(𝑘, 𝑟)] = {1, 2, ⋯ , 𝑊(𝑘, 𝑟)}, there is a monochromatic arithmetic
progression (A.P.) of 𝑘 terms.

The following statement can be established by applying induction on the number of colours in
van der Waerden’s theorem:

Theorem 5. Given 𝑘, 𝑟, 𝑠 ∈ Z+, there exists 𝑁 = 𝑁(𝑘, 𝑟, 𝑠) ∈ Z+ such that for any 𝑟-colouring
of [𝑁], there are 𝑎, 𝑑 ∈ Z+ such that the set

{𝑎, 𝑎 + 𝑑, ⋯ , 𝑎 + 𝑘𝑑} ∪ {𝑠𝑑} ⊂ [𝑁]

is monochromatic.

Remark 1. Taking 𝑠 = 1 in the above, a monochromatic set {𝑎, 𝑎 + 𝑑, } ∪ {𝑑} already implies
Schur’s theorem. We shall see later that a much stronger statement follows from the above theorem.

1.3 A theorem of Rado and the notion of degree of regularity

From Schur’s theorem and a special case of van der Waerden’s theorem one sees that for any finite
colouring of Z+, there are monochromatic solutions of the following equations:

𝑥 + 𝑦 = 𝑧,
𝑥 + 𝑧 = 2𝑦.

One is naturally led to the question that given an equation 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 = 0, 𝑐𝑖(≠ 0) ∈ Z,
when does it have a monochromatic solution (𝑥1, ⋯ , 𝑥𝑛).

In fact, successful investigations of Rado ([12], [13], [14]) provided necessary and sufficient
conditions for a system of homogeneous linear equations over Z to possess monochromatic solutions
in any finite colouring of Z+. Here we state the following abridged version.

Theorem 6. (Rado) Given an equation

𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 = 0, 𝑐𝑖(≠ 0) ∈ Z,

it has a monochromatic solution (𝑥1, ⋯ , 𝑥𝑛), where 𝑥𝑖’s may not be distinct, in Z+ with respect
to any finite colouring if and only if some non-empty subset of {𝑐1, … , 𝑐𝑛} sums to zero.

Remark 2. To prove that the condition in the above theorem is sufficient, one may use (see [11],
for instance) Theorem [5]. It should be noted that from the general version of Rado’s theorem
(which we are not taking up here), van der Waerden’s theorem follows (see [11]). For necessity,
one uses the so called super modulo colour 𝑆𝑝 (see [11]).
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1. Degree of Regularity of a Linear Diophantine Equation

Definition. If an equation 𝐿 ∶ 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 = 0 over Z has a monochromatic solution in Z+

with respect to any finite colouring of Z+, it is called regular over Z+.
One observes that if the equation (𝐿) is not regular, then there is a super modulo colour 𝑆𝑝

for which (𝐿) is not regular. However, 𝑆𝑝 is a (𝑝 − 1)-colouring and depending on the coefficients,
𝑝 has to be chosen large.

Rado made the conjecture that there is a function 𝑟 ∶ Z+ → Z+ such that given any equation
𝐿 ∶ 𝑐1𝑥1 + ⋯ + 𝑐𝑛𝑥𝑛 = 0 with integer coefficients which is not regular over Z+, there exists a
partition of Z+ into at most 𝑟(𝑛) parts with no part containing a solution to the equation.

We state it for a single homogeneous equation as it has been proved by Rado [13] that if the
conjecture is true for a single equation, then it is true for a system of finitely many linear equations,
and Fox and Kleitman [8] have shown that if the conjecture is true for a linear homogeneous
equation, then it is true for any linear equation. This conjecture is known as Rado’s Boundedness
Conjecture.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [8] where it
was shown that 𝑟(3) ≤ 24.
Definition. Given 𝑛 ∈ Z+, the equation (𝐿) is said to be 𝑛-regular over Z+ if, for every 𝑛-colouring
of Z+, there exists a monochromatic solution 𝑥 ∈ (Z+)𝑘+1 to (𝐿). The degree of regularity of (𝐿)
is the largest integer 𝑛 ≥ 0, if any, such that (𝐿) is 𝑛-regular. This (possibly infinite) number is
denoted by 𝑑𝑜𝑟(𝐿). If 𝑑𝑜𝑟(𝐿) = ∞, then (𝐿) is regular.

In general one speaks about 𝑛-regularity over 𝐴 ⊆ Z and defines 𝑑𝑜𝑟𝐴(𝐿). For any 𝐴 ⊆ 𝐵 ⊆ Z,
clearly 1 ≤ 𝑑𝑜𝑟𝐴(𝐿) ≤ 𝑑𝑜𝑟𝐵(𝐿). It is not very difficult to observe that if (𝐿0) is regular, and the
coordinate sum of 𝛼 is nonzero, then 𝑑𝑜𝑟Z+(𝐿) = 𝑑𝑜𝑟Z(𝐿).

Now we state another conjecture of Rado [13].
Conjecture. For each positive integer 𝑟, there is a linear homogeneous equation that has degree
of regularity 𝑟.

Alexeev and Tsimerman [5] proved the conjecture in 2010. Later, a proof of the following
conjecture of Fox and Radoićič [9] by Golowich [10] supplied another proof of the above conjecture
of Rado.
Conjecture (Fox and Radoićič). The degree of regularity of the following is (𝑛 − 1):

𝑥1 + 2𝑥2 + ⋯ + 2𝑛−2𝑥𝑛−1 = 2𝑛−1𝑥𝑛.
Recently, Adhikari and Goswami [4] have shown that for every 𝑚, 𝑛 ∈ Z+, there exists an

𝑚-degree homogeneous equation that is 𝑛-regular but not (𝑛 + 1)-regular.
Next we come to a conjecture due to Fox and Kleitman [8] for a very specific linear Diophantine

equation.
Conjecture (Fox and Kleitman). Let 𝑘 ≥ 1. There exists an integer 𝑏𝑘 ≥ 1 such that the
degree of regularity of the 2𝑘-variable equation 𝐿𝑘(𝑏𝑘),

𝑥1 + ⋯ + 𝑥𝑘 − 𝑦1 − ⋯ − 𝑦𝑘 = 𝑏𝑘

is exactly 2𝑘 − 1.
Fox and Kleitman [8] had shown that for any 𝑏 ∈ N+, the equation 𝐿𝑘(𝑏) is not 2𝑘-regular.

Indeed, if 𝑏 is not a multiple of 𝑘, then considering the coloring given by the residue class modulo 𝑘,
there is no monochromatic solution to the equation 𝐿𝑘(𝑏), and the equation is not even 𝑘-regular;
we are through.

So, we assume that 𝑏 is a multiple of 𝑘 and consider the following 2𝑘-coloring of N+:
For 1 ≤ 𝑖 ≤ 2𝑘, the set of integers colored 𝑖 is defined to be

𝑋𝑖 = ⋃
𝑗≥0

([(𝑖 − 1)𝑏/𝑘 + 1, 𝑖𝑏/𝑘] + 2𝑏𝑗).

Now, the set 𝑋𝑖 − 𝑋𝑖 is independent of 𝑖. Since the set 𝑘(𝑋1 − 𝑋1) = ⋃𝑗∈Z
([−𝑏 + 𝑘, 𝑏 − 𝑘] + 2𝑗𝑏)

is a union of translates of [−𝑏 + 𝑘, 𝑏 − 𝑘] by integer multiples of 2𝑏, it cannot contain 𝑏. Therefore,
for any 𝑖, 1 ≤ 𝑖 ≤ 2𝑘, 𝑘(𝑋𝑖 − 𝑋𝑖) does not contain 𝑏. This shows that 𝐿𝑘(𝑏) is not 2𝑘-regular.
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When 𝑘 = 2, Adhikari and Eliahou [3] proved the Fox-Kleitman conjecture by establishing the
following more general result:

For all positive integers 𝑏, we have

dor(𝐿2(𝑏)) =
⎧{
⎨{⎩

1 if 𝑏 ≡ 1 mod 2,
2 if 𝑏 ≡ 2, 4 mod 6,
3 if 𝑏 ≡ 0 mod 6.

From a result of Strauss [19], it follows that, for an appropriate 𝑏𝑘, the equation 𝐿𝑘(𝑏𝑘) is
Ω(log 𝑘)-regular.

Adhikari, Balasubramanian, Eliahou and Grynkiewicz [1] gave a very short proof of the fact
that, writing 𝑐𝑘−1 = lcm{𝑖 ∶ 𝑖 = 1, 2, … , 𝑘 − 1}, the equation 𝐿𝑘(𝑐𝑘−1) is (𝑘 − 1)-regular.

The full conjecture of Fox and Kleitman has been established by Schoen and Taczala [17] by
generalizing a theorem of Eberhard, Green and Manners [6].

Adhikari, Boza, Eliahou, Revuelta, Sanz [2] considered the 4-variable Diophantine quadratic
equation (𝑥1 − 𝑦1)(𝑥2 − 𝑦2) = 𝑏, denoted by 𝑄(𝑏), where 𝑏 is a given positive integer.

This equation is not regular. Indeed, it is not 𝑏-regular, and actually not even 𝑠-regular where
𝑠 = ⌊

√
𝑏⌋ + 1, as witnessed by the 𝑠-coloring given by the class mod 𝑠. For if 𝑥1, 𝑦1, 𝑥2, 𝑦2 are all

congruent mod 𝑠, then (𝑥1 − 𝑦1)(𝑥2 − 𝑦2) is divisible by 𝑠2, and hence cannot equal 𝑏 since 𝑠2 > 𝑏.
That is, we have dor(𝑄(𝑏)) ≤ ⌊

√
𝑏⌋.

It was shown in [2] that, nevertheless, the numbers dor(𝑄(𝑏)) are unbounded as 𝑏 varies:

Theorem 7. Given a positive integer 𝑟, there is a positive integer 𝑏 = 𝑏(𝑟) such that the equation
(𝑥1 − 𝑦1)(𝑥2 − 𝑦2) = 𝑏 is 𝑟-regular.

In the proof of the above, the following result was used in [2].

Theorem 8. (Szemerédi). Given a desired length 𝑘 ∈ Z+ and a specified density 0 < 𝛿 ≤ 1,
there exists a positive integer 𝑁 = 𝑁(𝑘, 𝛿) such that every subset 𝐴 ⊆ [1, 𝑁] of density |𝐴|/𝑁 ≥ 𝛿
contains an arithmetic progression of length 𝑘.

Theorem (7) was further generalized by Bidisha Roy and Subha Sarkar [16].
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□ □ □

How many subspaces 𝑉 of C𝑛 are there which satisfy the cyclic property:
“If (𝑎1, … , 𝑎𝑛) ∈ 𝑉 , then (𝑎𝑛, 𝑎1, … , 𝑎𝑛−1) ∈ 𝑉 ”?
𝑉1 = {(𝑎, 𝑎, … , 𝑎)|𝑎 ∈ C} and 𝑉2 = {(𝑎1, … , 𝑎𝑛) ∈ C𝑛|𝑎1 + … + 𝑎𝑛 = 0} are examples of
such subspaces. Also {(0, … , 0)} and C𝑛 are trivial examples of such subspaces. Are there
any more?
See the next issue of TMCB.
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ABSTRACT. The aim of this note is to give a self-contained elementary proof of the simplicity of
alternating groups which avoids using clever manipulations of cycle decompositions of permutations
as far as possible. We employ simple counting arguments to achieve this, instead of taking the
more familiar route using class equations.

2.1 Introduction

Every graduate student in mathematics, at some point or other, comes across a somewhat loose
statement like ‘alternating groups are simple’ (not entirely correct since the real story begins at
𝑛 = 5), or at least its more precise but weaker version that ‘𝐴5 is simple’. However, such a
statement remains a folklore for the majority of students. The main reason behind this is that
the proof of 𝐴𝑛’s being simple for all 𝑛 ≥ 5, involves several steps. While none of these steps are
particularly difficult to prove, the totality of the arguments often appears to be daunting, at least
in its first appearance. The standard proofs of this fact either use clever manipulations using cycle
decompositions of permutations, or a careful investigation of the class equations of 𝐴5 and 𝐴6, or
a combination of both. The first approach involves a generous amount of trial and error unless
one is able to memorize the clever tricks used in the cycle manipulations. On the other hand, the
second approach of using class equations, though algorithmic, leaves no choice but to go through
rather mundane computations.
In this note, we present a proof of the simplicity of the alternating groups 𝐴𝑛 for 𝑛 ≥ 5, which
does not involve too many computations using cycle decompositions. Also, it makes no use of class
equations, something which plays a pivotal role in most standard proofs. The key idea behind our
proof is a certain counting technique for finite groups, which, together with the use of embeddings
of 𝑆𝑛 (or, 𝐴𝑛) in 𝑆𝑛+1 (or, 𝐴𝑛+1) allows us to avoid class equations.
Here is the basic layout of the paper. In §2, we recall some standard definitions as well as some
basic facts about symmetric and alternating groups, which are used in this article. It also records
an easy but useful observation about symmetric groups (Proposition 2.2), which practically allows
us to cut down the size of symmetric and alternating groups. We note a well-known counting
result for finite groups in Lemma 2.2, which is an essential ingredient in the proof of the simplicity
of 𝐴6.�
In §3, we separately give a proof of the simplicity of 𝐴5. The reason for this is twofold. Firstly,
some readers may only be interested in the simplicity of 𝐴5, without bothering too much about
the simplicity of alternating groups of higher order. And secondly, the proof of the fact that 𝐴5 is
simple is so simple (pun intended), compared to the general case, that one can prove it without even
having any substantial knowledge about the structure of alternating groups. A similar argument
for the simplicity of 𝐴5 can be found in [3].�
In §4, we first prove that 𝐴6 is simple. The crucial fact used in the proof is that 𝐴6 does not have
any proper normal subgroup, which contains a 3-cycle (Lemma 4.2). We use the simplicity of 𝐴5,
together with Lemma 2.2, to show that every non-trivial normal subgroup of 𝐴6, in fact, contains
a 3-cycle, thereby proving that 𝐴6 is simple. Finally, an application of Proposition 2.2 reveals that
the simplicity of 𝐴5 and 𝐴6 is sufficient to conclude the 𝐴𝑛 is simple for all 𝑛 ≥ 5.

2.2 Preliminaries

Definitions and conventions. A nontrivial group 𝐺 is called simple if it has no normal subgroup
other than the obvious ones, namely the trivial subgroup {𝑒} and the whole group 𝐺.�
If 𝑋 is a set, the set of all bijections of 𝑋 forms a group with respect to composition of functions,
where the identity map plays the role of the identity element. It is called the symmetric group
over X, and is denoted by 𝑆𝑋 or Sym(𝑋). The elements of 𝑆𝑋, i.e., bijections of 𝑋, are also called
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permutations of 𝑋. A permutation is called non-trivial if it is not the identity map. The name
symmetric group, which carries a distinct geometric flavor, is inspired by the fact that permutations
of 𝑋 are nothing but (set-theoretic) symmetries of 𝑋.
If 𝑋 and 𝑌 are two sets and 𝑓 ∶ 𝑋 → 𝑌 is a bijection, then 𝑓 induces an isomorphism of groups

̃𝑓 ∶ 𝑆𝑋 → 𝑆𝑌 , given by 𝑓(𝜎) ≔ 𝑓 ∘ 𝜎 ∘ 𝑓−1 , where ∘ denotes the composition of functions.
If 𝑋 is a non-empty finite set consisting of 𝑛 elements, then 𝑆𝑋 is called the symmetric group
of degree 𝑛, and is usually denoted by 𝑆𝑛. It is customary to think of 𝑆𝑛 as the group of all
permutations of the set N𝑛 ≔ {1, 2, ..., 𝑛}, and the identity element of 𝑆𝑛 is denoted by 𝑒. Note
that 𝑆𝑛 contains 𝑛! elements. We will be only interested in finite symmetric groups.
If 𝑛 is a positive integer and 𝜎, 𝜏 ∈ 𝑆𝑛, we will denote the product of 𝜎 and 𝜏 by 𝜎 ⋅ 𝜏 , or simply by
𝜎𝜏 if there is no room for confusion. We follow the convention of applying functions from right to
left, i.e., (𝜎 · 𝜏)(𝑖) ≔ 𝜎(𝜏(𝑖)) for all 𝑖 ∈ N𝑛. Two permutations 𝜎, 𝜏 ∈ 𝑆𝑛 are said to be conjugates
if there exists a permutation 𝜂 ∈ 𝑆𝑛 such that 𝜏 = 𝜂 ⋅ 𝜎 ⋅ 𝜂−1. Note that conjugacy is an equivalence
relation on 𝑆𝑛.
If 𝜎 ∈ 𝑆𝑛, the support of 𝜎, denoted by supp 𝜎, is defined to be the set {𝑖 ∈ N𝑛|𝜎(𝑖) ≠ 𝑖}. On the
other hand, 𝑖 ∈ N𝑛 is called a fixed point of 𝜎 if 𝜎(𝑖) = 𝑖. Clearly, the set of all fixed points of 𝜎 is
nothing but the complement of its support. A permutation 𝜎 acts trivially on the elements outside
its support, as if it cannot ‘see’ them. We call two permutations 𝜎, 𝜏 ∈ 𝑆𝑛 disjoint if supp 𝜎∩supp
𝜏 = ∅. If 𝜎, 𝜏 ∈ 𝑆𝑛 have disjoint supports, then 𝜎𝜏 = 𝜏𝜎, simply because 𝜎 acts as the identity
map on the support of 𝜏 , and vice versa. However, the converse is false since every non-trivial
permutation 𝜏 ∈ 𝑆𝑛 commutes with itself!
Let 𝑛 be a positive integer and 𝜎 ∈ 𝑆𝑛. A set 𝑌 ⊆ N𝑛 is called 𝜎-invariant if 𝜎(𝑖) ∈ 𝑌 for all
𝑖 ∈ 𝑌 . The minimal non-empty 𝜎-invariant subsets of N𝑛 (with respect to set inclusion) are called
the orbits of 𝜎. An orbit of 𝜎 is called trivial if it contains only one element; otherwise, it is called
non-trivial. Note that the trivial orbits of 𝜎 correspond to its fixed points. It is easy to see that
the orbits of 𝜎 give rise to a partition of N𝑛. An experienced reader will not fail to recognize that
we are essentially speaking in the language of group actions. But we consciously avoid introducing
group actions as we do not need them.
A permutation 𝜎 ∈ 𝑆𝑛 is called a cycle if it has exactly one non-trivial orbit. The length of a cycle
𝜎 is defined to be the number of elements in its unique non-trivial orbit. Note that the length of
a cycle may take values between 2 to 𝑛. In particular, for us, the identity map is not a cycle. If 𝜎
is a cycle of length 𝑟, we call it an 𝑟-cycle. Other than the identity element, the simplest possible
permutations are the 2-cycles, which are also known as transpositions.
If 𝜎 ∈ 𝑆𝑛, the cycle type of 𝜎 is defined to be the finite non-increasing sequence (𝑛1, … , 𝑛𝑡), where
𝑛1, … , 𝑛𝑡 are the sizes of the orbits of 𝜎, arranged in a non-increasing order, so that ∑𝑖 𝑛𝑖 = 𝑛.
Clearly, the number of different possible cycle types of the elements of 𝑆𝑛 is the same as the number
of partitions of 𝑛.
A permutation 𝜎 ∈ 𝑆𝑛 is called an even permutation if 𝜎 can be written as a finite product of an
even number of transpositions. As customary, the empty product is defined as the identity element
of 𝑆𝑛. Since every permutation can be written as a finite product of transpositions (see Proposition
2.1 below), it immediately follows that the set of all even permutations of 𝑆𝑛 is a normal subgroup
of 𝑆𝑛 (Do not forget that 0 is an even number!). We call it the alternating group of degree 𝑛, and
denote it by 𝐴𝑛. Note that both 𝐴1 and 𝐴2 are trivial groups.

In the following proposition, we record some basic facts about symmetric and alternating groups,
which we will freely use in the sequel. The proofs can be found in any standard graduate-level
textbook on abstract algebra like [1], [2], [4] or [5] (for example, see Section 4 of Chapter IV of [1]).
By no means, this list is exhaustive, as there are hundreds of good algebra books available on the
market.

Proposition 2.1. Let 𝑛 be a positive integer.

(a) Every permutation in 𝑆𝑛 can be written as a finite product of disjoint cycles.
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(b) A permutation in 𝑆𝑛 is either a product of an even number of transpositions or an odd
number of transposition, but not both.

(c) Every 𝑟-cycle in 𝑆𝑛 can be written as a product of 𝑟 − 1 transpositions. In particular, an
𝑟-cycle is an even permutation if and only if 𝑟 is odd.

(d) The symmetric group 𝑆𝑛 is generated by all transpositions of 𝑆𝑛.

(e) For all 𝑛 ≥ 2, there exist surjective group homomorphisms sgn ∶ 𝑆𝑛 → {±1}, called the sign
map, whose kernel is 𝐴𝑛.
In particular, 𝐴𝑛 contains 𝑛!

2 elements for all 𝑛 ≥ 2.
(f) If 𝜎 ∶= (𝑎1 𝑎2 … 𝑎𝑟) is an 𝑟-cycle in 𝑆𝑛, then

𝜏 ⋅ 𝜎 ⋅ 𝜏−1 = (𝜏(𝑎1) 𝜏(𝑎2) … 𝜏(𝑎𝑟))

for all 𝜏 ∈ 𝑆𝑛.

(g) Two permutations 𝜎, 𝜏 ∈ 𝑆𝑛 are conjugates (in 𝑆𝑛) if and only if they have the same cycle
type.

We also need to analyze the centers of symmetric and alternating groups. Recall that the center
of a group 𝐺, denoted by 𝑍(𝐺), is defined as

𝑍(𝐺) ∶= {𝑎 ∈ 𝐺 | 𝑎𝑔 = 𝑔𝑎 for all 𝑔 ∈ 𝐺}.

Lemma 2.1. The center of 𝑆𝑛 (respectively, 𝐴𝑛) is trivial for all 𝑛 ≥ 3 (respectively, 𝑛 ≥ 4).
Proof. First we consider the case of symmetric groups. Let 𝑛 ≥ 3 and 𝜎 ∈ 𝑆𝑛 a non-trivial

permutation. Then there exists 𝑖 ∈ N𝑛 such that 𝜎(𝑖) = 𝑗 ≠ 𝑖. As 𝑛 ≥ 3, we can find an element
𝑘 ∈ N𝑛\{𝑖, 𝑗}. Then it is clear that 𝜎 does not commute with the transposition 𝜏 ∶= (𝑗 𝑘), as
(𝜎 ⋅ 𝜏)(𝑖) ≠ (𝜏 ⋅ 𝜎)(𝑖).
As for alternating groups, note that 𝐴3 is the cyclic group of order 3. So let 𝑛 ≥ 4 and 𝜎 ∈ 𝐴𝑛 be
a non-trivial even permutation. As before, there exists an element 𝑖 ∈ N𝑛 such that 𝜎(𝑖) = 𝑗 ≠ 𝑖.
Then (𝑗 𝑘), as already noted, does not commute with 𝜎 for all 𝑘 ∈ N𝑛\{𝑖, 𝑗}. But (𝑗 𝑘) is not an
even permutation. So we choose another element 𝑙 ∈ N𝑛\{𝑖, 𝑗, 𝑘}, and observe that 𝜎 does not
commute with the 3-cycle 𝜏 ∶= (𝑗 𝑘 𝑙), as (𝜎 ⋅ 𝜏)(𝑖) ≠ (𝜏 ⋅ 𝜎)(𝑖).

Remark 2.1. In §4, we will prove that alternating groups are, in fact, generated by all 3-cycles.
So, in hindsight, it is clear that one does not need to look beyond 3-cycles to determine the center
of 𝐴𝑛.

The following counting argument will be used in the proof of the simplicity of 𝐴6.
Lemma 2.2. Let 𝐻, 𝐾 be subgroups of a finite group 𝐺, and

𝐻𝐾 ∶= {ℎ𝑘 ∈ 𝐺 | ℎ ∈ 𝐻, 𝑘 ∈ 𝐾}.

Then |𝐻𝐾| = |𝐻|⋅|𝐾|
|𝐻∩𝐾| . In particular, if |𝐻| ⋅ |𝐾| > |𝐺|, then 𝐻 ∩ 𝐾 is non-trivial.

Proof. Let 𝜙 ∶ 𝐻 × 𝐾 → 𝐺 be the set-theoretic map, defined as 𝜙(ℎ, 𝑘) ∶= ℎ𝑘−1. Since 𝐾 is a
subgroup of 𝐺, by definition, the image of 𝜙 is 𝐻𝐾. As |𝐻 × 𝐾| = |𝐻| ⋅ |𝐾|, the assertion follows
if we can show that the pre-image of every element of 𝐻𝐾 contains exactly |𝐻 ∩ 𝐾| elements. Let
𝑔 ∶= ℎ𝑘−1 ∈ 𝐻𝐾. If 𝑦 ∈ 𝐻 ∩ 𝐾, then 𝜙(ℎ𝑦, 𝑘𝑦) = (ℎ𝑦)(𝑘𝑦)−1 = ℎ𝑘−1. So, the pre-image of 𝑔
contains at least |𝐻 ∩ 𝐾| elements. Conversely, let ℎ1 ∈ 𝐻, 𝑘1 ∈ 𝐾 be such that 𝜙(ℎ1, 𝑘1) = 𝑔.
Then ℎ1𝑘−1

1 = ℎ𝑘−1, implying that ℎ−1ℎ1 = 𝑘−1𝑘1 ∈ 𝐻 ∩ 𝐾. Setting 𝑦 ∶= ℎ−1ℎ1 = 𝑘−1𝑘1, it is
clear that ℎ1 = ℎ𝑦 and 𝑘1 = 𝑘𝑦. Therefore, the pre-image of 𝑔 contains exactly |𝐻 ∩ 𝐾| elements,
and hence the assertion follows. The second claim is obvious since |𝐻𝐾| ≤ |𝐺|.

Let 𝑆𝑋 be the symmetric group over a set 𝑋, and 𝑌 a subset of 𝑋. Then one may identify 𝑆𝑌
with the set of all permutations of 𝑋, which do not disturb any element outside 𝑌 . This simple
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observation about symmetric groups, which we formally record as the following proposition, will
later allow us to reduce the sizes of symmetric and alternating groups.

Proposition 2.2. Let 𝑋 be a non-empty subset of N𝑛 containing 𝑟 elements. Let 𝐻𝑋 ⊆ 𝑆𝑛
be the set of all permutations, which fix every element outside 𝑋. Then 𝐻𝑋 is a subgroup of 𝑆𝑛.
Further, if 𝑋 ∶= {𝑎1, … , 𝑎𝑟} and 𝑓 ∶ N𝑟 → 𝑋 is the set-theoretic function which sends 𝑖 to 𝑎𝑖 for
all 𝑖, then ̃𝑓 ∶ 𝑆𝑟 → 𝐻𝑋, defined as

( ̃𝑓(𝜎))(𝑥) = {(𝑓 ∘ 𝜎 ∘ 𝑓−1)(𝑥) if 𝑥 ∈ 𝑋,
𝑥 otherwise,

for all 𝜎 ∈ 𝑆𝑟, is a group isomorphism, which preserves 𝑙-cycles for all 2 ≤ 𝑙 ≤ 𝑟. In particular,
if 𝐾𝑋 is the set of all even permutations of 𝑆𝑛, which fix every element outside 𝑋, then 𝐾𝑋 =
𝐻𝑋 ∩ 𝐴𝑛 = ̃𝑓(𝐴𝑟).

Proof. The routine verifications are left as an exercise for the reader. Note that if 𝜎 ≔
(𝑏1 𝑏2 ⋯ 𝑏𝑙) ∈ 𝑆𝑟 is an 𝑙-cycle, then ̃𝑓(𝜎) = (𝑓(𝑏1) 𝑓(𝑏2) ⋯ 𝑓(𝑏𝑙)).

2.3 𝐴5 is simple

The simplicity of 𝐴5 turns out to be an immediate consequence of the following observation.
Lemma 3.1. Let 𝐺 be a group and 𝑁 a normal subgroup of 𝐺 with a finite index. Let 𝑥 ∈ 𝐺

be an element of finite order. If the order of 𝑥 is relatively prime to [𝐺 ∶ 𝑁], the index of 𝑁 in 𝐺,
then 𝑥 ∈ 𝑁 . Thus 𝑁 contains all elements of 𝐺 whose orders are coprime to [𝐺 ∶ 𝑁].

Proof. Let 𝜋 ∶ 𝐺 → 𝐺/𝑁 be the natural projection, which takes an element 𝑔 ∈ 𝐺 to the
corresponding left coset 𝑔𝑁 . Then, by Lagrange’s theorem, the order of 𝜋(𝑥) divides the order of
𝑥 as well as [𝐺 ∶ 𝑁], implying that the order of 𝜋(𝑥) = 𝑥𝑁 is one, or equivalently, 𝑥 ∈ 𝑁 .

Remark 3.1. The above result may fail if 𝑁 is not a normal subgroup of 𝐺. For example, if
we take 𝐺 ∶= 𝑆3 and 𝐻 the cyclic subgroup of order 2 generated by (1 2), then the 2-cycle (1 3)
is not contained in 𝐻.

Theorem 3.1. 𝐴5 is a simple group.
Proof. Looking at the possible cycle types of various elements of 𝐴5, it is easy to see that 𝐴5

consists of the identity element, twenty-four 5-cycles, twenty 3-cycles and fifteen elements which
are products of two disjoint 2-cycles. Consequently, 𝐴5 contains 24 elements of order 5, 20 elements
of order 3 and 15 elements of order 2.
Now, let 𝑁 be a non-trivial normal subgroup of 𝐴5. By Lagrange’s theorem, the possible orders
of 𝑁 are 2, 3, 4, 5, 6, 10, 12, 15, 20 and 30. If |𝑁| = 2, then 𝑁 = {𝑒, 𝜎}, for some 𝜎 ∈ 𝐴5, satisfying
𝜎2 = 𝑒. Then for each 𝜏 ∈ 𝐴5, 𝜏𝜎𝜏−1 ∈ 𝑁 , implying that 𝜏𝜎𝜏−1 = 𝜎. But that means 𝜎 is
contained in the center of 𝐴5, which is a contradiction as the center of 𝐴5 is trivial by Lemma 2.1.
We now invite the reader to use Lemma 3.1 in verifying that 𝐴5 cannot contain a normal subgroup
of the remaining possible orders. For example, if 𝑁 is a normal subgroup of order 12, then
[𝐺 ∶ 𝑁] = 5, so by Lemma 3.1, 𝑁 must contain all elements of 𝐴5 of order 3, which is not possible
as 𝐴5 contains 20 elements of order 3. As for one more example, if 𝑁 is of order 30 then 𝑁 has
index 2, so 𝑁 contains all elements of order 3 and 5, implying that 𝑁 contains at least 20 + 24 = 44
elements, which is not possible.

2.4 𝐴𝑛 is simple for all 𝑛 ≥ 6

First, we prove that 𝐴6 is simple. For that, we need a few preparatory results which are interesting
in their own right. Recall that every permutation in 𝑆𝑛 can be written as a finite product of
transpositions, i.e., 2-cycles. However, 2-cycles are odd permutations; and therefore, are not
elements of 𝐴𝑛. So we look at 3-cycles, which are even permutations, and it should not come as a
surprise to the reader that alternating groups are generated by 3-cycles.
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Lemma 4.1. Every alternating group is generated by its 3-cycles.
Proof. The alternating groups 𝐴1 and 𝐴2 are trivial; and 𝐴3 is a cyclic group of order 3, which

is generated by each of its two 3-cycles (1 2 3) and (1 3 2). Next, in 𝐴4, there are eight 3-cycles.
With the order of 𝐴4 being 12, it is clear from Lagrange’s theorem that no proper subgroup of
𝐴4 can contain all 3-cycles. So 𝐴4 is also generated by 3-cycles. Now, we consider 𝐴𝑛 for some
𝑛 ≥ 5. Since every even permutation can be written as a product of the product of a pair of
transpositions, it is sufficient to prove that the product of every pair of transpositions can be
written as a finite product of 3-cycles. So, we consider two transpositions (𝑎 𝑏), (𝑐 𝑑) ∈ 𝑆𝑛, and
let 𝜎 ∶= (𝑐 𝑑)(𝑎 𝑏) ∈ 𝐴𝑛. We want to prove that 𝜎 can be written as a (finite) product of 3-cycles.
We can find a set 𝑋 ∶= {𝑎1, 𝑎2, 𝑎3, 𝑎4} ⊆ N𝑛, consisting of four elements, such that 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝑋
(we do this because the two transpositions (𝑎 𝑏) and (𝑐 𝑑) may not be disjoint).
Let 𝐾𝑋 ⊆ 𝐴𝑛 be the subset of all even permutations which fix every element outside 𝑋. Then
𝐾𝑋 = 𝐻𝑋 ∩ 𝐴𝑛 and by Proposition 2.2, there exists an isomorphism between 𝐾𝑋 and 𝐴4 which
preserves the 3-cycles. As the 3-cycles of 𝐴4 generate 𝐴4 and 𝜎 ∈ 𝐾𝑋, we conclude that 𝜎 can be
written as a finite product of 3-cycles, which finishes the proof.

Remark 4.1. If 𝑎, 𝑏, 𝑐, 𝑑 ∈ N𝑛 are distinct elements, then one may observe that (𝑎 𝑐)(𝑎 𝑏) =
(𝑎 𝑏 𝑐) and (𝑐 𝑑)(𝑎 𝑏) = (𝑎 𝑐 𝑑)(𝑎 𝑏 𝑑). This proof, although very neat, does not really tell us how
to anticipate the second equality. As a result, it may require some trial and error, and that is why
we chose to give a proof that is more conceptual. The preference will largely depend on the taste
of the reader, and we leave it at that.

It follows from Proposition 2.1(f) that any two 3-cycles of 𝑆𝑛 are conjugates of each other.
Since 𝐴3 is a cyclic group of order 3, its 3-cycles are not conjugates; and we leave it as an easy
exercise for the reader to check that not all 3-cycles of 𝐴4 are conjugates in 𝐴4 (a little knowledge
about group actions, and, in particular, the orbit-stabilizer theorem might help!). However, starting
from 𝑛 = 5, all 3-cycles of 𝐴𝑛 are actually conjugates in 𝐴𝑛.

Lemma 4.2. Any two 3-cycles of 𝐴𝑛 are conjugates (in 𝐴𝑛) for all 𝑛 ≥ 5.
In particular, if a normal subgroup 𝑁 ⊴ 𝐴𝑛 contains a 3-cycle, then 𝑁 = 𝐴𝑛.
Proof. Let (𝑎 𝑏 𝑐) and (𝑑 𝑒 𝑓) be two 3-cycles in 𝐴𝑛. Since they are conjugates in 𝑆𝑛, there

exists a permutation 𝜏 ∈ 𝑆𝑛 such that 𝜏(𝑎 𝑏 𝑐)𝜏−1 = (𝑑 𝑒 𝑓). If 𝜏 is an even permutation, we
are done. Otherwise, choose 𝑔, ℎ ∈ N𝑛\{𝑎, 𝑏, 𝑐}, and replace 𝜏 by 𝜏 ⋅ (𝑔 ℎ). This makes 𝜏 an even
permutation satisfying 𝜏(𝑎 𝑏 𝑐)𝜏−1 = (𝑑 𝑒 𝑓).
The second assertion is trivial since all 3-cycles of 𝐴𝑛 are conjugates, and by lemma 4.1, they
generate 𝐴𝑛.

Therefore, if 𝑁 ⊴ 𝐴𝑛 is a non-trivial normal subgroup for some 𝑛 ≥ 5, then to prove that
𝑁 = 𝐴𝑛, it is enough to show that 𝑁 contains a 3-cycle. Sadly, we cannot prove it right now, but
we can prove something very close.

Lemma 4.3. Let 𝑁 be a non-trivial normal subgroup of 𝐴𝑛 for some 𝑛 ≥ 4. Then 𝑁 contains
a product of two 3-cycles, which is not the identity element.

Proof. Since 𝑁 is non-trivial, we can find a non-trivial permutation 𝜎 ∈ 𝑁 . With the center
of 𝐴𝑛 being trivial and the set of all 3-cycles generating 𝐴𝑛, we can choose a 3-cycle 𝜏 ∈ 𝐴𝑛 such
that 𝜎 ⋅ 𝜏 ≠ 𝜏 ⋅ 𝜎, or equivalently, 𝜎̃ ∶= 𝜎 ⋅ 𝜏 ⋅ 𝜎−1 ⋅ 𝜏−1 is not the identity element. Since 𝑁 is normal,
𝜏 ⋅ 𝜎−1 ⋅ 𝜏−1 ∈ 𝑁 , implying that 𝜎̃ ∈ 𝑁 . As 𝜎 ⋅ 𝜏 ⋅ 𝜎−1 and 𝜏−1 are both 3-cycles, the assertion
follows.

Remark 4.2. Can you see that the analogous assertion fails in 𝐴3?
Since we are interested in proving the simplicity of 𝐴6, and Lemma 4.3 ensures that every

non-trivial normal subgroup of 𝐴6 contains a non-trivial element that is a product of two 3-cycles,
let us try to find out what can be said about the number of elements in a normal subgroup of
𝐴6, which contains a product of two disjoint 3-cycles. We are interested in the size of the normal
subgroup as we want to apply Lemma 2.2.
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2. A(nother) Proof of the Simplicity of Alternating Groups

Lemma 4.4. Let 𝑁 be a normal subgroup of 𝐴6, which contains a product of two disjoint
3-cycles, say (𝑎1 𝑎2 𝑎3) and (𝑏1 𝑏2 𝑏3). Then 𝑁 contains at least 10 elements.

Proof. There are six permutations of the form (𝑎2 𝑐)(𝑎3 𝑑), where 𝑐, 𝑑 ∈ {𝑏1, 𝑏2, 𝑏3} are distinct
elements. If 𝜎 ∶= (𝑎2 𝑐)(𝑎3 𝑑) ∈ 𝐴6 is any such permutation, then 𝜎(𝑎1 𝑎2 𝑎3) (𝑏1 𝑏2 𝑏3)𝜎−1 =
(𝑎1 𝑐 𝑑)(𝜎(𝑏1) 𝜎(𝑏2) 𝜎(𝑏3)) is contained in 𝑁 . Therefore, it is clear that 𝑁 contains at least seven
elements, including the identity element. So we can use Lagrange’s theorem to conclude that
|𝑁| ≥ 10.

Remark 4.3. Let 𝜎 ∈ 𝑆6 be a product of two disjoint 3-cycles. Then it is easy to see that the
conjugacy class of 𝜎 (in 𝑆6) contains 40 elements. If one knows the basics of group actions, it is
not difficult to check that the conjugacy class of 𝜎 in 𝐴6 contains either 20 or 40 elements. But
since we promised not to use group actions, we avoid this line of argument.

We are now in a position to prove that 𝐴𝑛 is simple for all 𝑛 ≥ 6.
Proposition 4.1. 𝐴6 is a simple group.
Proof. Let 𝑁 ⊴ 𝐴6 be a non-trivial normal subgroup. By Lemma 4.3, 𝑁 contains a non-

identity element, which is a product of two 3-cycles, say 𝜎 and 𝜏 . First, suppose that 𝜎 and 𝜏
have a common fixed point, say 𝑖 ∈ N6. Let 𝐾′

𝑖 denote the set of all even permutations which
fix 𝑖. By Proposition 2.2, 𝐾′

𝑖 is isomorphic to 𝐴5. Since 𝐴5 is simple, and 𝐾′
𝑖 ∩ 𝑁 is a nontrivial

normal subgroup of 𝐾′
𝑖 , it follows that 𝐾′

𝑖 ⊆ 𝑁 . Clearly, 𝐾′
𝑖 contains a 3-cycle, implying that

𝑁 = 𝐴6. Next, let us assume that 𝜎 and 𝜏 are disjoint 3-cycles. Let 𝐾′
1 denote the set of all

even permutations which fix 1. Again, by Proposition 2.2, 𝐾′
1 is isomorphic to 𝐴5. By Lemma

4.4, 𝑁 contains at least 10 elements. Since 𝐾′
1 contains 60 elements, it follows form Lemma 2.2

that 𝐾′
1 ∩ 𝑁 is non-trivial. As 𝐾′

1 is simple and 𝐾′
1 ∩ 𝑁 a non-trivial normal subgroup of 𝐾′

1, we
conclude that 𝐾′

1 ⊆ 𝑁 . With 𝐾′
1 containing a 3-cycle, it follows that 𝑁 = 𝐴6.

Theorem 4.1. 𝐴𝑛 is simple for all 𝑛 ≥ 6.
Proof. Let 𝑁 ⊴ 𝐴𝑛 be a non-trivial normal subgroup. By Lemma 4.3, 𝑁 contains a non-trivial

product of two 3-cycles, say 𝜎 and 𝜏 . As the supports of both 𝜎 and 𝜏 contain three elements,
we can find a set 𝑋 ⊆ N𝑛, consisting of 6 elements, such that supp 𝜎 ∪ supp 𝜏 ⊆ 𝑋. Let 𝐾𝑋
denote the set of all elements of 𝐴𝑛 whose supports are contained in 𝑋. By Proposition 2.2, 𝐾𝑋
is isomorphic to 𝐴6. So 𝐾𝑋 is simple by Proposition 4.1, and 𝐾𝑋 ∩ 𝑁 is a non-trivial normal
subgroup of 𝐾𝑋. Therefore, 𝐾𝑋 ⊆ 𝑁 . In particular, 𝑁 contains a 3-cycle, implying that 𝑁 = 𝐴𝑛.
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ABSTRACT. There are various coordinates on a sphere like the zenith distance, hour angle,
azimuth, declination, right ascension, celestial longitude and latitude, etc. associated with a
celestial object. There are not all independent, and relations among them can be obtained using
modern spherical trigonometry. In ancient Indian astronomy texts, these were obtained using
various geometrical constructions. The twelfth century Indian astronomer Bhāskarācārya has
given detailed explanations of these relations in his magnum opus, Siddhāntaśiromaṇi (1150 CE).
We give some representaive examples of these in this article.

3.1 Introduction

Bhāskarācārya is one of the greatest names in the history of ancient and medieval Indian mathe-
matics and astronomy. He was born in 1114 CE, and probably hailed from the region around the
present Patne or Patan in the western Indian province of Maharashtra. Bhāskara’s Līlāvatī (The
sportive one) on arithmetic and geometry, and Bījagaṇita (Algebra) are standard works on Indian
mathematics [3]. The Siddhāntaśiromaṇi (‘Crest jewel among the treatises on astronomy’) com-
posed in 1150 CE by Bhāskarc̄ārya is one of the most comprehensive treatises on Indian astronomy
[2, 8]. These were canonical textbooks for students of astronomy and mathematics in India for the
next few centuries, and are taught in the Sanskrit institutes in India, even now1.

The Siddhāntaśiromaṇi has two parts, namely, Grahagaṇita (‘Planetary computations’) and
Golādhyāya (‘Chapter on spherics’2). Grahagaṇita expounds on all the standard calculations and
algorithms in astronomy of Bhāskara’s times. It has 460 verses in 12 chapters. Golādhyāya which
has more than 490 verses, has the definitions, more fundamental issues (like the nature of the
earth, the placement of stars and planets around it and so on), and the principles and theoretical
details of the calculations in Grahagaṇita. The verses in these two parts have been translated into
English with notes [1, 7]. An important feature of the Siddhāntaśiromaṇi is that Bhāskara himself
has written a commentary on it, known as the ‘Vāsanābhāṣya’ or the ‘mitākṣarā’ which explains
all the algorithms contained in the verses, and also gives their derivations (upapattis). Recently,
we have translated the verses and the vāsnabhāṣya of the Grahagaṇita part of the treatise, and
prepared detailed explanatory notes based on the bhāṣya [12].

Spherical trigonometry in the sense of relations among the variables on the celestial sphere is
very much needed for solving diurnal problems, eclipse calculations etc. It is natural that the Indian
astronomy texts deal with the relations among the spherical variables. The geometrical insights of
Bhāskara come into full play in handling such problems. We present some representative examples
of Bhāskara’s solutions of spherical problems in this article.

In Section 2, we introduce the celestial coordinates and spherical trigonometry relevant for this
article. In Section 3, we take up the geometrical constructions of Bhāskara to obtain expressions
for the declination and the right ascension (R.A.) of a celestial object on the ecliptic in terms of
its longitude. In Section 4, we discuss the very important expression for the zenith distance (𝑧) in
terms of the latitude (𝜙), declination (𝛿), and the hour angle (𝐻). This is used by Bhāskara to
devise an instrument called “phalakayantra” (rectangular board instrument) to find the hour angle
of the Sun at any instant. In Section 5, we consider the expression for (𝑧) in terms of (𝜙), (𝛿),
and the azimuth (𝐴) which is more difficult, as it involves the solution of a quadratic equation for

1These include the Lal Bahadur Shastri Rashtriya Sanskrit Vidyapeetha in New Delhi, Benares Hindu University
and Sampurnanand Sanskrit Vishwavidyalaya in Varanasi, Madras Sanskrit College in Chennai, and Rashtriya
Sanskrit Vidyapeetha in Tirupati, to name a few.

2Spherical Geometry.
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3. Spherical Trigonometry in Bhāskarācārya’s Siddhāntaśiromaṇi (1150 CE)

the cosine of the zenith distance (𝑧). We summarise Bhāskara’s detailed method for solving the
problem. Spherical trigonometry is taken forward considerably by the astronomer-mathematicians
of the Kerala school (main works during 14𝑡ℎ-17𝑡ℎ century C.E.), and we touch upon this in Section
6 on the concluding remarks.

3.2 Celestial coordinates and Spherical trigonometry
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Fig. 1. Celestial coordinates. (a). 𝑧, 𝑎, 𝐴, (b). 𝐻, 𝛿, 𝛼, (c). 𝜆, 𝛽.

We depict the variables of interest on the sphere associated with a celestial object at 𝑋, like
the zenith distance (𝑧 = 𝑍𝑋), altitude (𝑎 = 𝑋𝐵), azimuth (𝐴 = 𝑁𝐵) in Fig. 1(a), hour angle
(𝐻 = 𝑍 ̂𝑃𝑋), declination (𝛿 = 𝑋𝐵), right ascension (𝛼 = Γ𝐵) in Fig. 1(b), and celestial longitude
(𝜆 = Γ𝐵), celestial latitude (𝛽 = 𝑋𝐵) in Fig. 1(c). Here Γ is the vernal equinox (where the
celestial equator and the ecliptic intersect). We can obtain relations among them using spherical
trigonometry.

3.2.1 Basic relations in Modern Spherical Trigonometry

Now, spherical triangles are made of great circle arcs only. In the spherical triagle below, 𝑎, 𝑏, 𝑐 are
the sides (arc lengths; can be measured in angles also), and 𝐴, 𝐵 and 𝐶 are the spherical angles.

In modern spherical trigonometry, we have the cosine formula,

cos 𝑎 = cos 𝑏 cos 𝑐 + sin 𝑏 sin 𝑐 cos𝐴, and, similarly for cos 𝑏, and cos 𝑐, (3.1)

and the sine formula,
sin 𝑎
sin𝐴 = sin 𝑏

sin𝐵 = sin 𝑐
sin𝐶 . (3.2)
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A

C

a

c

B

b

Fig. 2. Spherical triangle with sides 𝑎, 𝑏, 𝑐 and angles 𝐴, 𝐵, 𝐶.

Many more relations can be derived using these basic formulae and related spherical triangles.

3.3 Spherical variables and the relations among them in Indian texts

How did Indian texts handle the spherical variables and the relations among them? In the earliest
text on mathematical astronomy in India, namely, Āryabhaṭīya (499 CE) [9], one quarter is on
Gola (sphere). The formula for the declination,

sin 𝛿 = sin 𝜖 sin𝜆, (3.3)

is used implicitly in this text, though not stated explicitly. In his commentary (Vāsanābhāṣya)
on verses 47 and 48 in the second chapter (on “True longitudes of planets”) in the Grahagaṇita
part of Siddhāntasiromaṇi (c. 1150 CE) [3], Bhāskarācārya explains this relation using the “rule
of three” which would amount to comparing similar triangles.3

O

A

B

O’

A’

B’

Γ

ε

δ

λ

Fig. 3. Declination (𝛿 = 𝐴′𝑂̂𝐵′) of an object at 𝐴′

From now onwards, 𝑅 is the radius of the (celestial) sphere. In Fig. 3, the plane of the equator
is that with points Γ, 𝑂, 𝐵, and the plane of the ecliptic is the one with points Γ, 𝑂, 𝐴. The angle
between them is 𝜖 = 𝐴𝑂̂𝐵. Corresponding to a point 𝐴′ on the ecliptic, arc Γ𝐴′ = 𝑅𝜆, where Γ is
the intersection point of the two planes on the sphere, and 𝜆 = Γ𝑂̂𝐴′ is the (celestial) longitude.
Let 𝐴′𝐵′ be perpendicular to the plane of the equator. Then 𝛿 = 𝐴′𝑂̂𝐵′ is the declination of 𝐴′.
Let 𝐴′𝑂′ be perpendicular to 𝑂Γ. Then,

𝐴′𝐵′ = 𝑅 sin 𝛿, 𝐴′𝑂′ = 𝑅 sin𝜆, 𝐴𝐵 = 𝑅 sin 𝜖, 𝐴𝑂 = 𝑅.
Now, triangles 𝐴′𝐵′𝑂′ and 𝐴𝐵𝑂 are similar. Hence,

𝐴′𝐵′

𝐴′𝑂′ = 𝐴𝐵
𝐴𝑂, or 𝑅 sin 𝛿

𝑅 sin𝜆 = 𝑅 sin 𝜖
𝑅 , or,

sin 𝛿 = sin 𝜖 sin𝜆.

3He has not given the geometrical construction in Fig. 3, which is however implicit.
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3. Spherical Trigonometry in Bhāskarācārya’s Siddhāntaśiromaṇi (1150 CE)

3.3.1 Relation between the longitude, 𝜆 and the R.A., 𝛼
A verse in the Golapāda (the quarter-part on spherics) Āryabhaṭīya [6] says:

iṣṭajyāguṇitamahorātravyāsārdhameva kāṣṭāntyaṃ|
svāhorātrārdhahṛtaṁ phalamajāllaṅkodayaprāgjyā ||
Multiply the day radius corresponding to the greatest declination (on the ecliptic)
by the desired Rsine, and divide by the corresponding day radius: the result is the
Rsine of the right ascension measured from the first point of Aries along the equator.
[Translation by K. S. Shukla and K. V. Sarma]

Here,

the desired Rsine is 𝑅 sin𝜆,
the day-radius corrsponding to the greatest declination is 𝑅 cos 𝜖,
the day-radius is 𝑅 cos 𝛿, and
the Rsine of the right ascension (R.A.) is 𝑅 sin𝛼.

Then,

𝑅 sin𝛼 = 𝑅 sin𝜆 × 𝑅 cos 𝜖
𝑅 cos 𝛿 . (3.4)

Āryabhaṭīya has only algorithms and no explanations. This can be easily derived using the sine
formula of modern spherical trigonometry.

r α

P

S
λ

Fig. 4. The longitude, 𝜆, and the R.A., 𝛼.
In Fig. 4, consider the spherical triangle Γ𝑃𝑆. Γ𝑆 = 𝜆, is an arc along the ecliptic, Γ ̂𝑃𝑆 = 𝛼
is the R.A.. It is also an arc along the equator. 𝑃𝑆 = 90 − 𝛿, where 𝛿 is the declination, and
𝑃 Γ̂𝑆 = 90 − 𝜖, where 𝜖 is the obliquity of the ecliptic. Using the sine formula,

sinΓ𝑆
sinΓ ̂𝑃𝑆

= sin𝑃𝑆
sin(90 − 𝜖) , or, sin𝜆

sin𝛼 = cos 𝛿
cos 𝜖 .

So, sin𝛼 = 𝑠𝑖𝑛𝜆 cos 𝜖
cos 𝛿 .

In his commentary (Vāsanābhāṣya) on verses 54 and 55 in the second chapter (on the “True
longitudes of planets”) in the Grahagaṇita part of Siddhāntaśiromaṇi [8], Bhāskara proves this
with a geometrical construction as shown in Fig. 5. We present the essence of Bhāskara’s proof in
the following.

In Fig. 5, the celestial equator, ecliptic and the diurnal circle of radius 𝑅 cos 𝛿 of the Sun at
S on the ecliptic, with longitude 𝜆 and R.A. 𝛼 are shown. Consider the vertical right triangle
with the hypotenuse marked “𝑅 sin𝜆” on the ecliptic plane, and with the “opposite side” (bhuja)
as a vertical dashed line marked “𝑅 sin 𝛿” in the plane of the equatorial horizon (Laṅkā) which is
perpendicular to the celestial equator. Then, the “adjacent side” (koṭi) is on the diurnal circle of
S and is given by

√𝑅2 sin2 𝜆 − 𝑅2 sin2 𝛿 = √𝑅2 sin2 𝜆 − 𝑅2 sin2 𝜖 sin2 𝜆 = 𝑅 sin𝜆 cos 𝜖.
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But, this koṭi is actually 𝑅 cos 𝛿 sin𝛼, as it is the Rsine of the R.A. 𝛼 in a circle of radius 𝑅 cos 𝛿,
and shown as such in the figure. Hence,

𝑅 cos 𝛿 sin𝛼 = 𝑅 sin𝜆 cos 𝜖, or,

sin𝛼 = sin𝜆 cos 𝜖
cos 𝛿 .

Γ
λ

S

R cosδ

Celestial equator

R sinλ
ecliptic

R cosδsinαDiurnal circle

R sinδ

α

Fig. 5. Geometrical construction for the relation between 𝑅 sin𝛼 and 𝑅 sin𝜆

3.4 Zenith distance (𝑧) in terms of the latitude (𝜙), declination (𝛿), and
the hour angle (𝐻)

N

φ

S

P

90−δ

90−φ

δ
H S

z

Z

W

A

φ

90−φ

Fig. 6. Spherical triangle 𝑃𝑍𝑆 with sides 𝑃𝑍 = 90∘ − 𝜙, 𝑍𝑆 = 𝑧, 𝑃𝑆 = 90∘ − 𝛿, and angle
𝑍 ̂𝑃𝑆 = 𝐻.

Consider a celestial object 𝑆, typically, the Sun. In the spherical triangle 𝑃𝑍𝑆 in Fig. 6, 𝑍𝑆 = 𝑧,
the zenith distance, 𝑃 𝑍 = 90∘ − 𝜙, where 𝜙 is the latitude, 𝑃𝑆 = 90 − 𝛿, where 𝛿 is the declination,
𝑍 ̂𝑃𝑆 = 𝐻, the hour angle, and 𝑃 ̂𝑍𝑆 = 𝐴, the Azimuth.

Applying the cosine formula to 𝑍𝑆:

cos𝑍𝑆 = cos𝑃𝑍 cos𝑃𝑆 + sin𝑃𝑍 sin𝑃𝑆 cos𝑍 ̂𝑃𝑆, or, (3.5)
cos 𝑧 = sin𝜙 sin 𝛿 + cos𝜙 cos 𝛿 cos𝐻. (3.6)

What was the method of Bhāskara to obtain this relation? 4

3.4.1 Bhāskara’s method for obtaining 𝑧 in terms of 𝜙, 𝛿 and 𝐻
In Fig. 7, 𝑂 is the centre of the celestial sphere of radius R. NPZS is the Meridian. At some instant,
the Sun is at 𝑆′. Its declination is 𝛿. 𝑆𝑟𝑆2𝑈𝑆′𝑆1𝑆𝑡 is the diurnal circle of the Sun with C as the
centre. Its radius is 𝑅 cos 𝛿. Just as the plane of the equator, the plane of the diurnal circle is
inclined to plane of horizon at an angle, 90∘ − 𝜙. 𝑆𝑟𝑇 𝑆𝑡 is the Rising-Setting line of the Sun. The
straight line 𝑆2𝐶𝑆1 is parallel to this.

4See Reference [10], pp. 370-376 for details.
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Fig. 7. Geometry for the zenith distance 𝑧 for declination, 𝛿, and hour angle, 𝐻.

𝑧 = 𝑍𝑂̂𝑆′ is the zenith distance of the Sun. It is also the angle corresponding to arc
𝑍𝑆′.

𝐻 = 𝑍 ̂𝑃 𝑆′ is the hour angle of the Sun.

𝑆′𝐹 is perpendicular to the horizon, and 𝑆′𝐹 = 𝑅 cos 𝑧 is the ‘Śaṅku’ or the ‘Gnomon’.

𝑂𝐶 = 𝑅 sin 𝛿 is perpendicular to UT.

𝐶𝑈 = 𝑅 cos 𝛿 is the ‘dyujyā’ or the ‘Day-radius’.

𝑂𝐶𝑇 is a right-triangle with 𝑂𝐶 = 𝑅 sin 𝛿 and 𝐶 ̂𝑇 𝑂 = 90 − 𝜙.

Hence, 𝐶𝑇 = 𝑅 sin 𝛿 sin 𝜙
cos 𝜙 . It is called the ‘kṣitijyā’ or the ‘Earth-sine’.

In verse 34 of the chapter on Tripraśna in the Grahagaṇita part of Siddhāntaśiromaṇi [8], hṛti
is defined as the sum of dyujyā (day-radius) and kṣitijyā (Earth-sine). This is UT. So,

hṛti = 𝑈𝑇 = 𝑅 cos 𝛿 + 𝑅 sin 𝛿 sin𝜙
cos𝜙. (3.7)

Draw UG perpendicular to the horizon. It is the ‘Dinārdhaśaṅku’, or the ‘Mid-day gnomon’.
UGT is a right triangle with 𝑈 ̂𝑇 𝐺 = 90∘ − 𝜙. Then,

Mid-day gnomon = 𝑈𝐺 = cos𝜙 × hṛti (= 𝑈𝑇 )
So, Mid-day gnomon = 𝑅 cos 𝛿 cos𝜙 + 𝑅 sin 𝛿 sin𝜙. (3.8)

Draw 𝑆′𝐶′ perpendicular to UT. 𝑆′ ̂𝐶𝐶′ = 𝐻.

𝐶𝑆′ = 𝐶𝑈 = 𝑅 cos 𝛿, 𝐶𝐶′ = 𝑅 cos 𝛿 cos𝐻.

𝐶′𝑈 = 𝐶𝑈 − 𝐶𝐶′ = 𝑅 cos 𝛿(1 − cos𝐻).

Draw 𝐶′𝑉 perpendicular to UG. One can easily see that the plane with the points
𝑆′, 𝐶′, 𝑉 is a horizontal plane. UV is called the Ūrdhva (Upwards), as it is the upper
portion of the Dinārdhaśaṅku (Mid-day Gnomon), UG. 𝑈 ̂𝐶′𝑉 = 90 − 𝜙. Then,

Ūrdhva (Upwards) = 𝑈𝑉 = 𝐶′𝑉 sin(90∘ − 𝜙) = 𝑅 cos 𝛿 cos𝜙(1 − cos𝐻).
This is how Ūrdhva is described in verses 58 and 59 of the mentioned chapter. Then in verse 60 it
is stated that,

Desired Gnomon, 𝑅 cos 𝑧 = 𝑆′𝐹 = 𝑉 𝐺 = 𝑈𝐺 − 𝑈𝑉
= Mid-day Gnomon−Upwards,
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or, 𝑅 cos 𝑧 = 𝑅 sin𝜙 sin 𝛿 + 𝑅 cos𝜙 cos 𝛿 cos𝐻, (3.9)
or, cos 𝑧 = sin𝜙 sin 𝛿 + cos𝜙 cos 𝛿 cos𝐻, (3.10)

which is the desired result.

3.4.2 Hour angle, 𝐻 in terms of 𝑧, 𝜙, 𝛿, and the Phalakayantra (Board instrument) of
Bhāskara

The hour angle 𝐻 can be determined in terms of 𝑧, 𝛿, and 𝜙, by rewriting equation (3.9) as,

𝑅 cos𝐻 = 𝑅 cos 𝑧
cos𝜙 cos 𝛿 − 𝑅 sin𝜙 sin 𝛿

cos𝜙 cos 𝛿 . (3.11)

The phalakyantra (Board Instrument) is an instrument devised by Bhāskara himself to measure
the hour angle based on the above relation, and described in the yantrādhyāya, the chapter on
instruments in Golādhyāya [7, 10]. He is very proud of it, and introduces it thus:

“As others have not stated the [determination of] correct time from [observations us-
ing] a vertical circle with ease, I have attempted [to devise] an instrument called pha-
lakayantra, [which incorporates] the essence of calculations based on the true rationales
pertaining to the sphere, which I will explain clearly.”

N
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Fig. 8. Phalakayantra for measuring the hour angle, 𝐻.

In the upper part of the instrument, there is a circle with a radius of 30 units. There is a small hole
at the centre with a pin placed in it. This pin is the axis of the instrument. The circumference of
the circle is divided into “60 ghaṭī s”5 and 360 degrees. Each degree is made of 10 “palas”. There
is also a Paṭṭikā or an Index arm which is suspended vertically, with a hole at the centre. Also,
a horizontal line is drawn through the central hole, and lines parallel to it drawn below it at
equal intervals, for measuring distance along the vertical direction. The following is Bhāskara’s
instruction for using the instrument:

“Now hold the instrument so that the rays of the Sun shall illuminate both of its sides
equally [to secure its being in a vertical circle]; the place in the circumference marked
out by the shadow of the axis should be assumed by an intelligent man to be the Sun’s
place.”
“Now place the index arm on the axis and putting it over the Sun’s place, from the
point at the end of the yaṣṭi set off above or below depending on the [hemi]sphere
[above if the Sun is in the northern hemisphere, and below if it is in the southern
hemisphere], the Rsine of the ascensional difference (carajyā). The distance from the
point where the sine [which meeting the end of the carajyā thus set off,] cuts the circle,
to the perpendicular line will represent the nata (hour angle) in ghaṭikās.”

5A ghaṭī corresponds to 24 minutes of time.
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(Here yaṣṭi = 𝑅
cos 𝜙 cos 𝛿 , where 𝑅 is 30. carajyā = 𝑅 sin 𝜙 sin 𝛿

cos 𝜙 cos 𝛿 .) [Translation byWilkinson,
1861.]

Now, the zenith dist of the Sun is 𝑧, and the altitude 𝑎 = 90∘ − 𝑧.
𝑀𝐿 = 𝑂𝑀 sin 𝑎 = 𝑂𝑀 cos 𝑧 = 𝑅 cos 𝑧

cos 𝜙 cos 𝛿 .
Mark a point 𝑉 on 𝑀𝐿 such that
𝑀𝑉 = carajyā = 𝑅 sin 𝜙 sin 𝛿

cos 𝜙 cos 𝛿 .
Draw 𝑉 𝑉 ′ parallel to 𝑂𝐿, intersecting the circle at 𝑉 ′. Draw 𝑉 ′𝐿′ parallel to 𝑉 𝐿.
Then,

𝑉 ′𝐿′ = 𝑉 𝐿 = 𝑀𝐿 − 𝑀𝑉 = 𝑅 cos 𝑧
cos𝜙 cos 𝛿 − 𝑅 sin𝜙 sin 𝛿

cos𝜙 cos 𝛿
= 𝑅 cos𝐻, from equation (11).

But 𝑉 ′𝐿′ = 𝑅 sin𝑉 ′𝑂̂𝐿′ = 𝑅 cos𝑉 ′𝑂̂𝑁.
Hence, 𝑉 ′𝑂̂𝑁 is the hour angle 𝐻. It is the number of divisions on the circle between 𝑁 , and
the point 𝑉 ′ at which the horizontal line from 𝑉 intersects the circle.

3.5 Zenith distance 𝑧 in terms of the latitude 𝜙, the declination 𝛿 and
the azimuth 𝐴

Let 𝑧 and 𝐴 be the zenith distance and the azimuth of the Sun (S) when its declination is 𝛿 at a
place with latitude 𝜙, as shown in the following figure (Fig. 9).
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Fig. 9. Geometry for the zenith distance 𝑧, for declination 𝛿 and azimuth 𝐴.

Here 𝐴 is the angle between the north-south or the meridian circle, and the vertical passing through
𝑆 (𝑃 ̂𝑍𝑆). In the Indian texts, the azimuthal angle, termed the digaṃśa, is the angle between the
vertical passing through 𝑆 and the prime vertical, which we denote by 𝑎. Clearly, 𝐴 = 90∘ ± 𝑎,
when 0∘ ≤ 𝐴 ≤ 180∘. In the figure, 𝐴 = 90∘ + 𝑎.

Using the modern cosine formula for the side 𝑃𝑆 in the spherical triangle 𝑍𝑃𝑆, where the
sides are 𝑃 𝑍 = 90 − 𝜙, 𝑍𝑆 = 𝑧, 𝑃𝑆 = 90 − 𝛿, and the angle 𝑃 ̂𝑍𝑆 = 𝐴, we have

cos(90 − 𝛿) = sin 𝛿 = cos(90 − 𝜙) cos 𝑧 + sin(90 − 𝜙) sin 𝑧 cos𝐴,
or cos 𝑧 sin𝜙 = sin 𝛿 ± sin 𝑧 sin 𝑎 cos𝜙 when 𝐴 = 90 ± 𝑎. (3.12)

Now 𝛿 can be found directly from 𝜙, 𝑧, and 𝑎 from the above equation. However 𝑧 cannot be found
directly in terms of 𝛿, 𝜙, and 𝑎, as both cos 𝑧 and sin 𝑧 appear in the equation. One would have to
solve a quadratic equation for sin 𝑧, after squaring both sides and using cos2 𝑧 = 1 − sin2 𝑧.
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3.5.1 Bhāskara’s method for obtaining 𝑧 in terms of 𝜙, 𝛿 and 𝐴: śaṅku, bhujā, agrā, and
śaṅkutala

In Fig. 9, the Sun rises at 𝑆𝑟, moves along the diurnal circle and sets at 𝑆𝑡. If we assume that
Sun’s declination 𝛿 is constant through the day, the ‘rising- setting’ line, 𝑆𝑟𝑆𝑡 would be parallel to
the east–west line. From 𝑆𝑡, draw 𝑆𝑡𝐺 perpendicular to the east–west line meeting it at 𝐺. 𝑆𝑡𝐺 is
the “arkāgrā” or just “agrā”. It is the distance between the ‘rising-setting’ line and the east-west
line.

Now the plane of the diurnal circle is inclined at an angle 90 − 𝜙 with the horizon. From 𝐺
draw 𝐺𝐷 perpendicular to the plane of the diurnal circle meeting it at 𝐷. Join 𝑆𝑡𝐷, which would
be perpendicular to 𝐺𝐷. Clearly, 𝐷 ̂𝑆𝑡𝐺 = 90 − 𝜙 and 𝐷 ̂𝐺𝑆𝑡 = 𝜙. 𝑆𝑡𝐷𝐺 is a latitudinal triangle
(a right-angled triangle with the latitude as one of the angles). Now 𝐺𝐷 = |𝑅 sin 𝛿|. Hence, agrā
= 𝑆𝑡𝐺 = ∣𝑅 sin 𝛿

cos 𝜙 ∣.
From 𝑆, draw 𝑆𝐹 perpendicular to the plane of the horizon. In Indian astronomy texts,

𝑆𝐹 = 𝑅 cos 𝑧 is called the “śaṅku” or the gnomon and 𝑂𝐹 = 𝑅 sin 𝑧 is called “dṛgjyā”. Draw
𝑅𝐹 perpendicular to the east-west line. 𝑅𝐹 = 𝑅 sin 𝑧 sin 𝑎 and it is called the “bhujā”. It is the
distance between the base of the śaṅku and the east-west line.

Extend 𝐹𝑅 to meet the rising-setting line perpendicularly, at 𝑆ℎ. 𝑆ℎ𝐹 is the distance between
the base of the śaṅku, F and the rising-settting line, and is called the “śaṅkutala”. 𝑆𝑆ℎ𝐹 is a
latitudinal triangle, with 𝑆 ̂𝑆ℎ𝐹 = 90∘ − 𝜙. Hence, the śaṅkutala, 𝑆ℎ𝐹 = 𝑆𝐹 sin 𝜙

cos 𝜙 = 𝑅 cos 𝑧 sin 𝜙
cos 𝜙 .

To summarise,

𝑆𝐹 ∶ śaṅku = 𝑅 cos 𝑧, (3.13)

𝑆𝑡𝐺 ∶ agrā = ∣𝑅 sin 𝛿
cos𝜙∣ , (3.14)

𝑅𝐹 ∶ bhujā = 𝑅 sin 𝑧 sin 𝑎, (3.15)

𝑆ℎ𝐹 ∶ śaṅkutala = 𝑅 cos 𝑧 sin𝜙
cos𝜙. (3.16)

Multiplying the equation for cos 𝑧 sin𝜙 by 𝑅, dividing by cos𝜙, and rearranging terms, we find:

±𝑅 sin 𝑧 sin 𝑎 = 𝑅 cos 𝑧 sin𝜙
cos𝜙 − 𝑅 sin 𝛿

cos𝜙 . (3.17)

Now Fig. 9 corresponds to the case of a northern declination, that is, 𝛿 = |𝛿|, and 𝐴 = 90∘ + 𝑎,
when we have to take the positive sign in the l.h.s. of the above equation. Hence,

bhujā = śaṅkutala − agrā, 𝛿 north, and 𝐴 = 90∘ + 𝑎. (3.18)
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Fig. 10. Geometry for the zenith distance, 𝑧 for a northern declination and 𝐴 < 90∘.

Fig. 10. depicts the situation when the declination is north, and 𝐴 = 90∘ − 𝑎, in which case, we
have to take the negative sign in the l.h.s. of the equation, and

bhujā = agrā − śaṅkutala, 𝛿 north, and 𝐴 = 90∘ − 𝑎. (3.19)
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Fig. 11. Geometry for the zenith distance, 𝑧 for a southern declination and 𝐴 > 90∘.

When the declination is south, 𝛿 = −|𝛿|, and agrā is = −𝑅 sin 𝛿
cos 𝜙 . Here 𝐴 = 90∘ + 𝑎, necessarily. In

this case, shown in Fig. 11,

bhujā = śaṅkutala + agrā, 𝛿 south. (3.20)

Actually, these relations follow from the definitions of bhujā, śaṅkutala, and agrā and the geometry
of the problem, as clear from the figures. They are equivalent to the cosine formula for the side
𝑃𝑆.

In the explanation (upapatti) for verse 30 of the third chapter of Grahagaṇita[8], Bhāskara
states these relations 6:

svāgrāsvaśaṅkutalayoryāmyagoleyogaḥ soumyetvantaraṁ bhujo bhavati|
The sum of the agrā and the śaṅkutala in the southern hemisphere, and their difference
in the northern hemisphere gives the bhuja.

3.5.2 Finding the zenith distance
The equation relating the bhujā, agrā and śaṅkutala is only the first step in solving for the śaṅku,
𝑅 cos 𝑧, and the zenith distance, 𝑧 from that. In the explanation (upapatti) for the verses 49, 50
and 51 in the chapter on Tripraśna in the Grahagaṇita part of Siddhāntaśiromaṇi [8], Bhāskara
casts the equation in terms of a ‘chāyā- karṇa’ or the ‘shadow hypotenuse’, and then discusses the
solution of the resulting quadratic equation. We first discuss the setting up of the equation, in the
following.
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Fig. 12. The 12-digit gnomon (dvādaśāṅgulaśaṅku), the shadow (chāyā) 𝑆 and the
shadow-hypotenuse (chāyākarṇa) 𝐾.

In Fig. 12, we consider the same situation as in Fig. 9, when the Sun has a declination 𝛿,
zenith distance 𝑧, and azimuth 𝐴, for a location with latitude 𝜙. 𝑂𝑋 is a 12-digit gnomon, or
“dvādaśāṅgula śaṅku”: 𝑂𝑋 = 12. Then 𝑂𝑌 = 𝑆 = 12 sin 𝑧

cos 𝑧 is the shadow of this gnomon, or the

6Reference [8], p. 57.
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“chāyā”, and 𝐾 = 12
cos 𝑧 is the “chāyā-karṇa”, or the shadow-hypotenuse. Draw 𝑌 𝑄 perpendicular

to the east-west line. 𝑌 𝑄 = 𝐵 = 𝑆 sin 𝑎 = 12 sin 𝑧
cos 𝑧 sin 𝑎, where 𝐴 = 90∘ ± 𝑎. 𝐵 is called the

“chāyābhujā”. In the figure, 𝐴 = 90∘ + 𝑎.
Note that 𝐾2 = 𝑆2 + 122 = 𝑆2 + 144.
Multiplying equation (17) by 𝐾 = 12

cos 𝑧 , and dividing by 𝑅, we find

±𝐵 (chāyābhujā) = 12 sin𝜙
cos𝜙 − 𝐾

𝑅
𝑅 sin 𝛿
cos𝜙 . (3.21)

On the equinoctial day, when 𝛿 = 0, and the Sun moves on the equator, we note that the chāyābhujā,
which is the distance between the tip of the shadow wnd the east-west line is a constant, 𝑠 = 12 sin 𝜙

cos 𝜙 .
This is called the “palabhā”. Hence, on the equinoctial day, the tip of the shadow of the gnomon
moves on a straight line parallel to the east-west line, at a distance equal to the palabhā. Note
that the chāyābhujā is the shadow itself at noon, when the Sun is on the meridian, and 𝑎 = 90∘.
Hence, the palabhā, 𝑠 = 12 sin 𝜙

cos 𝜙 , is the equinoctial mid-day shadow.
Now, denoting the agrā |𝑅 sin 𝛿

cos 𝜙 | by 𝒜, and multiplying equation (3.21) by R, we find that

𝐵𝑅 = 𝑠𝑅 ∼ 𝐾𝒜, 𝛿 north, (3.22)
𝐵𝑅 = 𝑠𝑅 + 𝐾𝒜, 𝛿 south. (3.23)

Now, 𝐵𝑅 = 𝑠 sin 𝑎 𝑅 = 𝑠 𝐷, where 𝐷 = 𝑅 sin 𝑎 is the digjyā. Squaring the equations (3.22, 3.23)
and noting that 𝐾2 = 𝑠2 + 144, we obtain the following equation for 𝐾:

(𝐾2 − 144)𝐷2 = 𝐾2𝒜2 ± 2𝐾𝒜𝑠𝑅 + 𝑠2𝑅2, ‶ + " for 𝛿 south, ‶ − " for 𝛿 north. (3.24)

After rearranging the terms, and dividing by 𝐷2 − 𝒜2 we have the following quadratic equation
for K:

𝐾2 ∓ 2𝐾 𝒜𝑠𝑅
𝐷2 − 𝒜2 = 𝑠2𝑅2 + 144𝐷2

𝐷2 − 𝒜2 , ‶ + " for 𝛿 south, ‶ − " for 𝛿 north. (3.25)

Here it can be recollected that

𝐾 (chāyākarṇa) = 12
cos 𝑧 , 𝒜 (agrā) = |𝑅 sin 𝛿

cos𝜙 |, 𝑠 (palabhā) = 12 sin𝜙
cos𝜙, 𝐷 (digjyā) = 𝑅 sin 𝑎. (3.26)

The procedure for solving the above quadratic equation for 𝐾 is which is spelt out clearly in the
remaining part of the upapatti for the cited verses 7, and the explanation in modern notation are
discussed in detail elsewhere [11]. We summarise it below.

Two variables “Ādya” denoted by 𝑥, and “Anya” denoted by 𝑦 are defined through the relations:

𝑥 = 𝑠2𝑅2 + 144𝐷2

𝐷2 − 𝒜2 , and 𝑦 = 𝒜𝑠𝑅
𝐷2 − 𝒜2 . (3.27)

Then, the formal solutions of the quadratic equation for 𝐾 are given by:

𝐾 = 𝑦 ± √𝑥 + 𝑦2, for 𝛿 south, and 𝐾 = −𝑦 ± √𝑥 + 𝑦2, for 𝛿 north. (3.28)

However, for the physical solutions, the zenith distance 𝑧 ≤ 90∘, and 𝐾 should be positive. We
consider the various cases now.

1. The declination 𝛿 is south.

7Reference [8], pp. 85-86.
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In this case, from Fig. 9, it is clear that the digjyā, 𝐷 is necessarily greater than the agrā, 𝒜.
Then 𝑥 is positive, and √𝑥 + 𝑦2 ≥ 𝑦. Hence, for positive 𝐾, only the “+” sign in front of the
square root is permissible, and

𝐾 = 𝑦 + √𝑥 + 𝑦2, for 𝛿 south. (3.29)

2. The declination 𝛿 is north, and 𝐷 > 𝒜.
In this case also, only the “+” sign in front of the square root is permissible, and

𝐾 = −𝑦 + √𝑥 + 𝑦2, for 𝛿 north, and 𝐷 > 𝒜. (3.30)

3. The declination 𝛿 is north, and 𝐷 < 𝒜.
In this case, both 𝑥 and 𝑦 are negative, −𝑦 = |𝑦|, and √𝑥 + 𝑦2 < |𝑦|. Then both the solutions

result in positive 𝐾 and

𝐾 = −𝑦 ± √𝑥 + 𝑦2, for 𝛿 north, and 𝐷 < 𝒜. (3.31)

The two solutions correspond to the location of the Sun south and north of the prime verical with
the same value of 𝑎, and hence the same value of the digjyā, 𝐷, but different values of 𝐴, namely
90∘ ± 𝑎. All these cases are discussed by Bhāskara.

3.6 Concluding remarks

Spherical trigonometry is very much needed for solving diurnal problems, eclipse calculations etc.
In Indian texts correct solutions were indeed found for most of the problems using appropriate
geometrical constructions. Bhāskara (born 1114 CE) was a master in this. He gives the algorithms
and gives proofs of them in his Siddhāntaśiromaṇi (1150 CE) with his own commentary. In this
article, we have given some examples of his treatment of problems involving spherical variables.
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Fig. 13. The five variables: zenith distance (𝑧), declination (𝛿), latitude (𝜙), azimuth (𝑎), and the
hour angle (𝐻) of a celestial object.

There was a significant advance of spherical trigonometry by the Kerala school, especially in
Tantrasaṅgraha of Nīlakaṇṭha Somayājī (1500 CE)[5], and the commentary on it, namely, Yuktib-
hāṣā of Jyeṣṭhadeva (1530 CE) [6]. In these texts, the problems involving spherical variables are
systematised. Here, many derivations are based on manipulations on the spherical surface and
not necessarily in the interior of the sphere as in Bhāskara’s methods described in this article.
This is true for the solutions of the “Ten problems” (daśapraśńāḥ). Consider the five variables:
zenith distance (𝑧), declination (𝛿), latitude (𝜙), (Indian) azimuth (𝑎), and the hour angle (𝐻), as
shown in Fig. 13. The ten problems refer to the methods for obtaining any two of them, given the
other three. The solutions are all exact. There are also new results like the exact expression for
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the declination of a planet with latitude, for instance, or an exact expression for the inclination of
Moon’s orbit with the equator at any instant, involving the longitude of the ascending node of the
Moon. Karaṇapaddhati of Putumana Somayaji (around 1550 CE) [4] carries forward the tradition
further.
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4.1 Two Long Standing Problems in Representation Theory have been
Solved

Two mathematical breakthroughs have been achieved by Pham Tiep, a profes-
sor at Rutgers University, which could significantly advance the understanding
of symmetries in nature and the behavior of various random processes. These
findings could revolutionize our understanding of symmetries and random pro-
cesses in fields such as physics, computer science, and even economics.
Tiep’s first breakthroughs was solving ‘The Zero Height Conjecture’ proposed
in 1955 by the renowned mathematician Richard Brauer.

The Conjecture is as follows: Let 𝐺 be a finite group and 𝑝 a prime. The set Irr(𝐺) of irreducible
complex characters can be partitioned into Brauer 𝑝-blocks. Each 𝑝-block 𝐵 is canonically asso-
ciated to a conjugacy class of 𝑝-subgroups, called the defect groups of 𝐵. The set of irreducible
characters belonging to 𝐵 is denoted by Irr(𝐵).
Let 𝜈 be the discrete valuation defined on the integers by 𝜈(𝑚𝑝∝) =∝ where 𝑚 is coprime to 𝑝.
Brauer proved that if 𝐵 is a block with defect group 𝐷 then 𝜈(𝜒(1) ≥ 𝜈(⌈𝐺 ∶ 𝐷⌉) for each 𝜒 ∈
Irr(𝐵). Brauer’s Height Zero Conjecture asserts 𝜈(𝜒(1)) = 𝜈(⌈𝐺 ∶ 𝐷⌉) that for all 𝜒 ∈ Irr(𝐵)
if and only if 𝐷 is abelian (See [2], [4]).
Tiep’s solution unveils a hidden rule of symmetry that could transform how scientists model com-
plex systems - from molecular structures to quantum mechanics. Understanding group structures
plays a critical role in computer algorithms, data encryption, and even material science.
Tiep’s work on the Height Zero Conjecture was a joint effort with several international colleagues,
including Gunter Malle from Germany, Gabriel Navarro from Spain, and Amanda Schaeffer Fry,
a former student now at the University of Denver. Proof of the conjecture was published in the
September issue of the Annals of Mathematics.
Tiep’s second major contribution is a solution of a difficult problem in what is known as the Deligne-
Lusztig theory, part of the foundational machinery of representation theory. Tiep and coauthors
have obtained bounds on traces, which confirm the long standing anticipations of experts in the
field. The work is detailed in two papers, one was published in Inventiones mathematicae, vol. 235
(2024), the second in Annals of Mathematics, vol. 200 (2024). Tiep’s discovery introduces a new
method to solve matrix-related problems, potentially revolutionizing the way mathematicians and
scientists analyze large-scale systems.
For the second breakthrough, Tiep worked with Robert Guralnick of the University of Southern
California and Michael Larsen of Indiana University. On the first of two papers that tackle the
mathematical problems on traces and solve them, Tiep worked with Guralnick and Larsen. Tiep
and Larsen are co-authors of the second paper.
Tiep’s solutions to long-standing problems in group theory and matrix analysis could influence
everything from developing next-generation AI models to improving the efficiency of telecommu-
nication networks.
Sources:

1. https://glassalmanac.com/mathematician-cracks-two-decades-old-problems -a- historic
-milestone/

2. https://www.thebr Defect group of a block - Encyclopedia of Mathematics ighterside.news/post
/professor- solves-two-long-standing-math-problems-advances-our-understanding-of-nature/

3. https://www.rutgers.edu/news/double-breakthrough-mathematician-solves-two-long-standing -
problems

4. https://en.wikipedia.org/wiki/Brauer%27s_height_zero_conjecture
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4.2 A Broader Version of Hilbert’s Famous 10𝑡ℎ Problem has been
Proved

In 1900, the eminent mathematician David Hilbert Introduced a list of 23 key problems which
were to guide the next century of mathematical research. The problems aimed at building a firm
foundation from which all mathematical truths could be derived. A key part of this vision was
that mathematics should be “complete”. That is, all its statements should be provably true or
false.
In the 1930s, Kurt Gödel demonstrated that this is impossible: In any mathematical system, there
are statements that can be neither proved nor disproved. A few years later, Alan Turing and others
built on his work, showing that mathematics is riddled with “undecidable” statements - statements
whose validity cannot be confirmed or negated by any computer algorithm.
Hilbert’s 10𝑡ℎ problem concerns Diophantine equations - polynomial equations saught to be solved
in integers. For millennia, mathematicians searched for integer solutions to them.
Hilbert’s 10𝑡ℎ problem asked whether it is always possible to tell if a given Diophantine equation
has integer solutions. Does an algorithm exist to determine this for every equation?
In 1970, a Russian mathematician Yuri Matiyasevich showed that there is no general algorithm
that can determine whether given Diophantine equation has integer solutions - that Hilbert’s 10𝑡ℎ

problem is an undecidable problem. You might be able to come up with an algorithm that can
assess most equations, but it won’t work for every single one.
Mathematicians wanted to test the reach of Matiyasevich’s conclusion. The equations in question
always have solutions over complex numbers, so if one of them is unsolvable for integers, then
the question arises as to where the cut-off arises when you pass to larger systems of numbers. In
the 50 years since Hilbert’s 10𝑡ℎ problem was resolved, mathematicians have been searching for

this cutoff.
Now, (from left to right) Peter Koymans, a mathematician at
Utrecht University and his longtime collaborator, Carlo Pagano
of Concordia University in Montreal - as well as another team
of researchers working independently - have taken a major step
toward that goal. Both groups have proved that for a vast and
important collection of settings beyond integers, there is likewise

no general algorithm to determine if any given Diophantine equation has a solution.
The new proofs focused on a natural extension of Hilbert’s 10𝑡ℎ problem. The extension deals
with Diophantine equations whose solutions belong to number systems which can be obtained by
starting with a finite set of numbers (like {1, −1,

√
2}) and adding those numbers in different

combinations, called rings of integers. Mathematicians suspected that, for every single ring of
integers the problem is still undecidable.
In general, undecidability proofs follow the same recipe: They show that the problem of interest is
equivalent to a famous undecidable problem in computer science called the halting problem. The
halting problem asks whether an idealized computational device called a Turing machine, when
fed a given input, will run forever or eventually halt. It’s known that there’s no algorithm that
can answer this for every Turing machine.
To settle Hilbert’s original 10𝑡ℎ problem, mathematicians built on the work that began with Julia
Robinson and others around 1950, and culminated in Matiyasevich’s 1970 result, in which it was
shown that for every Turing machine there is a corresponding Diophantine equation. The useful
correspondence between Turing machines and Diophantine equations falls apart when the equations
are allowed to have non-integer solutions.
A way to resolve the issue was found by Sasha Shlapentokh, and others. They decided to change
the Diophantine equation by adding few terms so that solutions to original equation in a new ring
of integers is equivalent to an integer solution to the revised equation and thereby re-establishing
correspondence with Turing machines. They also figured out what terms they had to add to the
Diophantine equations for various kinds of rings, could be determined using a special equation
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representing an elliptic curve. However, building such an elliptic curve that worked for every ring
of integers was an extremely subtle and difficult task.
In summer 2024, Koymans and Pagano could build an elliptic curve which gave them the recipe
they needed to add terms to their Diophantine equations, which then enabled them to encode
Turing machines - and the halting problem - in those equations, regardless of what number system
they used. Thus, they proved that Hilbert’s 10𝑡ℎ problem is undecidable for every ring of integers.
The result was solidified further in February, 2025, less than two months after Koymans and Pagano
posted their paper online, an independent team of four mathematicians announced a new proof of
the same result. Instead of looking for a special elliptic curve, they had relied on a different kind
of equation to do the same job.
Source: https://www.wired.com/story/new-proofs-expand-the-limits-of-what-cannot-be-known/

4.3 Mathematician Daniel Mathews Solve 380-Year-Old Problem
Inspired by Descartes

A long-standing geometric mystery dating back to the 17𝑡ℎ century has fi-
nally been solved by Associate Professor Daniel Mathews, a mathematician at
Monash University School of Mathematics, shedding new light on an equation
first written by philosopher and mathematician René Descartes.
The discovery extends the famous Descartes Circle Theorem stated in 1643,
which describes the relationship between four mutually tangent circles. The
theorem describes a quadratic equation in the radii of the circles such

that when it is satisfied, one can construct a fourth circle tangent to three given, mutu-
ally tangent circles. Despite centuries of mathematical progress, a general equation for larger
configurations of circles remained elusive - until now. Daniel Mathews found the equation
that governs these larger patterns of tangent circles, known as “𝑛-flowers”.

For 𝑛 ≥ 3, an 𝑛-flower consists of a central circle 𝐶∞,
and 𝑛 petal circles 𝐶𝑗 , over integers 𝑗 mod 𝑛, so that
the 𝐶𝑗 are externally tangent to 𝐶∞ in order around 𝐶∞,
and each 𝐶𝑗 is externally tangent to 𝐶𝑗−1 and 𝐶𝑗+1. (See
Figure 1). The curvature of a circle 𝐶∗ is denoted by
𝑘∗. Descartes’ theorem gives an equation satisfied by the
curvatures in a 3-flower:

(𝑘∞ + 𝑘1 + 𝑘2 + 𝑘3)2 = 2(𝑘2
∞ + 𝑘2

1 + 𝑘2
2 + 𝑘2

3).
Generalised Descartes Theorem, proved by Daniel Mathews is as follows: Let a 𝑛-flower consist of
a central circle 𝐶∞, and 𝑛 petal circles 𝐶𝑗(𝑗 ∈ Z/𝑛Z).

Define 𝑚0, and 𝑚𝑗 for 1 ≤ 𝑗 ≤ 𝑛 − 1 as 𝑚0 = √ 𝑘0
𝑘∞

+ 1, 𝑚𝑗 = √( 𝑘𝑗
𝑘∞

+ 1) (𝑘𝑗−1
𝑘∞

+ 1).
Then for odd 𝑛, the following holds:

𝑚2
0𝑖

2 (Π𝑛−1
𝑗=1 (𝑚𝑗 − 𝑖) − Π𝑛−1

𝑗=1 (𝑚𝑗 + 𝑖)) − Π(𝑛−1)/2
𝑗=1 (𝑚2

2𝑗−1 + 1) = 0.

For even 𝑛, the following holds: 𝑖
2 (Π𝑛−1

𝑗=1 (𝑚𝑗 − 1) − Π𝑛−1
𝑗=1 (𝑚𝑗 + 𝑖)) − Π(𝑛−1)/2

𝑗=1 (𝑚2
2𝑗 + 1) = 0.

The proof, which draws on modern mathematical techniques involving spinors - objects that also
play a role in quantum mechanics and relativity – solves a problem that has remained open for
more than 380 years [3]. Mathews used a version of spinors developed by Nobel prize-winner Roger
Penrose and Wolfgang Rindler, which they applied to the theory of relativity.
Others have generalised the result in other ways, but this is the first extension of the result to give
an explicit equation relating the radii of an arbitrary number of circles in the plane.
This discovery is an exciting example of how classical problems can inspire new mathematics
centuries later.
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Sources:
1. https://www.monash.edu/science/news-events/news/2025/mathematicians-solve-380-year-

old- problem-inspired-by-descartes
2. https://en.wikipedia.org/wiki/Descartes%27_theorem
3. https://www.danielmathews.info/wp-content/uploads/2023/10/spinors_and_descartes

_theorem.pdf

4.4 A Major Group Theory Problem, ‘Mckay Conjecture’ has been
Settled

In 2003 Britta Späth, a German graduate student, encountered a
McKay conjecture, one of the big open problems in group theory
and decided to dedicate all her time to working on it. She, now a
Professor at the University of Wuppertal in Germany, has finally
succeeded, together with her partner, Marc Cabanes, a mathemati-
cian now at the Institute of Mathematics of Jussieu in Paris.
The problem that absorbed them takes a key theme in mathematics

and turns it into a concrete tool for group theorists. The McKay conjecture, named after the
Canadian mathematician John McKay, who originally stated a limited version of it as a conjecture
in 1971, for the special case of prime 𝑝 = 2 and simple groups. The conjecture was later generalized
by other mathematicians to a more general conjecture for any prime 𝑝 and more general groups.
The conjecture states that: Suppose 𝑝 is a prime number, 𝐺 is a finite group, and 𝑃 is a Sylow
𝑝-subgroup of 𝐺. Then the irreducible complex characters of 𝐺 are in one-one correspondence
with the irreducible complex characters of the normalizer of 𝑃 .
After the conjecture was posed, several mathematicians tried their hand at proving it. They made
partial progress - and in the process they learned a great deal about groups. But a full proof
seemed out of reach.
The McKay conjecture for the prime 2 was proven by Gunter Malle and Britta Späth in 2016 [2].
A proof of the McKay conjecture for all primes and all finite groups was announced by Britta
Späth and Marc Cabanes in October 2023 in various conferences, a manuscript on it was put out
later in 2024 [3].
Sources:

1. https://www.quantamagazine.org/after-20-years-math-couple-solves-major-group-theory-
problem- 20250219/

2. Malle, Gunter; Späth, Britta (2016). “Characters of odd degree”. Annals of Mathematics.
184: 869- 908. doi:10.4007/annals.2016.184.3.6

3. Marc Cabanes; Britta Späth (2024). “The McKay Conjecture on character degrees”. arXiv:24-
10.20392 [RT].

4.5 The Kakeya Conjecture has been Solved for Dimension Three

Chinese mathematician Wang Hong has solved a geometry problem called the Kakeya conjecture
in three dimensions. It is considered a breakthrough that could have implications for imaging,
data processing, cryptography and wireless communication.
The conjecture goes back to 1917, when Japanese mathematician Sōichi Kakeya posed a problem:
If you place an infinitely thin needle onto a surface and rotate it to point in every single direction,
what is the smallest area the needle can cover?
In 1928, Besicovitch proved that one could in fact rotate a needle in arbitrary small amounts of
area.This led to the definition of a Kakeya set in ℜ2 to be a set which contained a unit line segment
in every direction. Besicovitch’s construction showed that Kakeya sets in ℜ2 could have arbitrarily
small measure; in fact, one can construct Kakeya sets which have Lebesgue measure zero. The

P 28 O

https://www.monash.edu/science/news-events/news/2025/mathematicians-solve-380-year-old- problem-inspired-by-descartes
https://www.monash.edu/science/news-events/news/2025/mathematicians-solve-380-year-old- problem-inspired-by-descartes
https://en.wikipedia.org/wiki/Descartes%27_theorem
https://www.danielmathews.info/wp-content/uploads/2023/10/spinors_and_descartes_theorem.pdf
https://www.danielmathews.info/wp-content/uploads/2023/10/spinors_and_descartes_theorem.pdf
https://www.quantamagazine.org/after-20-years-math-couple-solves-major-group-theory-problem- 20250219/
https://www.quantamagazine.org/after-20-years-math-couple-solves-major-group-theory-problem- 20250219/
Malle, Gunter; Späth, Britta (2016). "Characters of odd degree". Annals of Mathematics. 184: 869– 908. doi:10.4007/annals.2016.184.3.6
Malle, Gunter; Späth, Britta (2016). "Characters of odd degree". Annals of Mathematics. 184: 869– 908. doi:10.4007/annals.2016.184.3.6
Marc Cabanes; Britta Späth (2024). "The McKay Conjecture on character degrees". arXiv:2410.20392 [RT].
Marc Cabanes; Britta Späth (2024). "The McKay Conjecture on character degrees". arXiv:2410.20392 [RT].


4. What is Happening in the Mathematical World?

same question of how small these Kakeya sets could be was then posed in higher dimensions, giving
rise to Kakeya set conjecture: A Kakeya set in ℜ2 has Hausdorff and Minkowski dimension 𝑛.
The Kakeya conjecture was solved for 𝑛 = 2 by Davies in 1971, but remained open for 𝑛 ≥ 3. The
updates on the conjecture were discussed in section 3.2 of Issue 2 of TMCB Vol. 5 in October 2023.
In 1999, Nets Katz and Terence Tao showed that any counterexample to the conjecture must be
“plany”, which means that whenever line segments intersect at a point, those segments also lie
nearly in the same plane. It must also be “grainy”, which requires that the planes of nearby points
of intersection be similarly oriented. However, they couldn’t prove that all counterexamples must
be sticky, which would complete the proof of the conjecture. In a “sticky” set, line segments that
point in nearly the same direction also have to be located close to each other in space which in
turn force a lot of overlap among the line segments, thereby making the set as small as possible-
precisely what you need to create a counterexample.

In October 2022, Wang Hong, an associate professor at the New
York University Courant Institute of Mathematical Sciences (left)
and her collaborator Joshua Zahl, from The University of British
Columbia (right), proved that there are no sticky counter exam-
ples, with a Minkowski dimension of less than 3, to the Kakeya
conjecture [2].
Now, Wang and Zahl have claimed to have proved that, in three

dimensions, a Kakeya set does indeed have Hausdorff dimension 3 and Minkowski dimension 3.
They presented their milestone proof in a 127-page preprint paper on the open-access repository
arXiv on Feb. 24, 2025 [3] which is considered to be a significant progress in geometric measure
theory.
Sources:

1. https://www.scmp.com/news/china/science/article/3300958/chinese-maths-star-wang-hong-
solves-infamous-geometry-problem

2. “Sticky Kakeya sets and the sticky Kakeya conjecture” (Submitted on 18 Oct 2022), arXiv:
2210.09581 [math.CA].

3. Hong Wang; Joshua Zahl (2025-02-24). “Volume estimates for unions of convex sets, and
the Kakeya set conjecture in three dimensions”. arXiv:2502.17655 [math.CA].

4.6 Scientists Rediscover Lost Works of Apollonius in a
17𝑡ℎ-Century Manuscript

Researchers have found two lost books by Apollo-
nius, the ancient Greek mathematician known as the
Great Geometer. The works were found in an Ara-
bic manuscript preserved at the Libraries of Leiden
University in the Netherlands. The manuscript had
been forgotten in the library, part of a collection ac-
quired by Dutch mathematicianJacob Golius in the
17𝑡ℎ century.
The rediscovered manuscript contains the lost fifth
and seventh books of Apollonius’s renowned work,
the Conics. It introduces fundamental geometric

concepts such as hyperbolas, ellipses, and parabolas. These concepts had an impact on the scien-
tific world and are noted for their influence on the ancient mathematics.
Only four of the original eight books of the Conics were available to European scholars during the
Renaissance, as the fifth to eighth books were considered lost for centuries. The rediscovery of the
lost books reflects the Islamic Golden Age’s contributions to preserving knowledge. Islamic scholars
preserved and expanded ancient knowledge, which later contributed to the European Renaissance.
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The manuscript is a translation of books five to seven by Thabit ibn Qurra, edited by the Banū
Mūsā brothers. It is accompanied by illustrations and Arabic calligraphy, illuminating the history
of mathematics. These manuscripts not only contain mathematical knowledge but also attract
attention with calligraphy and geometric illustrations.
Apollonius of Perga, born around 260 BCE in the ancient Greek city of Perga, is known for his
pioneering work in geometry. He studied and taught in Alexandria and was one of the greatest
mathematicians and geometers of antiquity. Of the 21 works on mathematics, geometry, astronomy,
and mechanics that Apollonius wrote, only four have survived.
Source: https://www.jpost.com/archaeology/archaeology-around-the-world/article-841280

4.7 Awards

4.7.1 Angkana Rüland receives Leibniz Prize for her Outstanding Research
University of Bonn mathematician Angkana Rüland receives the Gottfried Wil-
helm Leibniz Prize from the German Research Foundation (DFG) which is en-
dowed with 2.5 million euros, in recognition of her excellent research work. The
researcher from the Hausdorff Center for Mathematics (HCM) at the University
of Bonn is honored with the award for her outstanding work in mathematical
analysis, particularly on models for microstructures in phase transitions in
solids and inverse problems with non-local operators.
In her research on microstructures, she is particularly interested in a class of

alloys that have shape- memory properties.
Her work on inverse problems, is about reconstructing information from indirect measurements -
such as is done with X-ray tomography or ultrasound scans, for instance. “This indirect information
lets you infer information on someone’s body without having to take any tissue samples”, Angkana
Rüland explains.
Rüland was born in 1987 in Chiang Mai, and was a mathematics student at the University of Bonn.
She completed her doctorate in 2014 with the dissertation On Some Rigidity Properties in PDEs
supervised by Herbert Koch. In 2014, she was awarded the “Hausdorff Memorial Prize” for the
best doctoral thesis in mathematics.
After postdoctoral research at the University of Oxford, working there with John M. Ball, she
became a researcher at the Max Planck Institute for Mathematics in the Sciences in 2017. She
took a professorship at Heidelberg University in 2020 before returning to the University of Bonn
in 2023.
The highly endowed Leibniz prize allows great freedom in research. Rüland, who is also a member
of the Transdisciplinary Research Area “Modeling” at the University of Bonn, would like to use
the prize money to further expand her research group at the HCM.
Sources:

1. https://www.uni-bonn.de/en/news/240-2024
2. https://www.mathematics.uni-bonn.de/en/news/leibniz-prize-awarded-to-angkana-ruland
3. https://en.wikipedia.org/wiki/Angkana_R%C3%BCland

4.7.2 Three Distinguished Mathematicians Receive The 2025 Leroy P. Steele Prizes
The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for
distinguished research work and writing in the field of mathematics. Since 1993, there has been a
formal division into three categories. The Steele Prize for Lifetime Achievement is awarded for the
cumulative influence of the total mathematical work of the recipient, high level of research over a
period of time, particular influence on the development of a field, and influence on mathematics
through Ph.D. students. The Leroy P. Steele Prize for Mathematical Exposition is awarded annu-
ally for a book or substantial survey or expository research paper. The Steele Prize for Seminal
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4. What is Happening in the Mathematical World?

Contribution to Research is awarded for a paper, whether recent or not, that has proved to be of
fundamental or lasting importance in its field, or a model of important research.
2025 Leroy P. Steele Prize for Lifetime Achievement:

English mathematician Dusa McDuff received the 2025 Leroy P. Steele Prize for
Lifetime Achievement from the American Mathematical Society for her outstand-
ing contributions in C*-algebras, symplectic geometry and topology, as well as
her leadership and mentoring in mathematics.
The prize is awarded for foundational and far-reaching contributions and long-
continued leadership and mentoring in mathematics. Specializing in the structures
and properties of space, she analyzes the interactions between pairs of quantities
by measuring two-dimensional areas.

She was the first recipient of the Ruth Lyttle Satter Prize in Mathematics, was a Noether Lecturer,
and is a Fellow of the Royal Society. She is currently the Helen Lyttle Kimmel ‘42 Professor of
Mathematics at Barnard College, New York.
2025 Leroy P. Steele Prize for Mathematical Exposition:

New Zealand mathematician working in arithmetic geometry - James S. Milne
has been awarded 2025 Leroy P. Steele Prize for Mathematical Exposition for his
“extensive corpus of excellent expository works” provided on his website.
The website, which Milne has been developing since 1996, now contains over 2,000
pages of notes, as well as other expository articles, covering a wide range of topics
within algebra and number theory, from basic group theory to class field theory
to abelian varieties to Shimura varieties to Tannakian categories and much more.

Many of the documents began as course notes but have been expanded and polished over decades to
become some of the most thorough and well-written accounts available of the topics they cover. The
inclusion of ample historical remarks and guides to the literature adds value for both newcomers
and experts. The expository works have educated a generation of arithmetic geometers and will
continue to do so for as long as they are available.�
Milne is Professor Emeritus of Mathematics at the University of Michigan.
2025 Leroy P. Steele Prize for Seminal Contribution to Research:

Professor Kenneth Alan Ribet will receive the 2025 AMS Leroy P. Steele Prize for
Seminal Contribution to Research for his groundbreaking 1976 paper “A modular
construction of unramified 𝑝-extensions of 𝑄(𝜇𝑝)”.
Kenneth Ribet is an American mathematician working in algebraic number theory
and algebraic geometry. He is known for the Herbrand-Ribet theorem and Ribet’s
theorem, which were key ingredients in the proof of Fermat’s Last Theorem, as
well as for his service as President of the American Mathematical Society from

2017 to 2019.
Ribet is credited with paving the way towards Andrew Wiles’s proof of Fermat’s Last Theorem.
In 1986, Ribet proved that the epsilon conjecture formulated by Jean-Pierre Serre was true, and
thereby proved that Fermat’s Last Theorem would follow from the Taniyama-Shimura conjecture.
He is currently a professor of mathematics at the University of California, Berkeley.
Sources:

1. https://www.ams.org/news?news_id=7402
2. https://en.wikipedia.org/wiki/Dusa_McDuff
3. https://en.wikipedia.org/wiki/Ken_Ribet

□ □ □
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5. A Peep into History of Mathematics
S. G. Dani

UM-DAE CEBS, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400098
Email: shrigodani@cbs.ac.in

Here are my picks for a peep into history for this issue.

5.1 Dipak Jadhav Object-numerals as listed in Nijaguṇa Śivayogī’s Viveka-Cintāmaṇī, Indian
Journal of History of Science 58 (2023), no. 1, 13-19.

Though the decimal place-value system, together with zero, for representing natural numbers
has been around at least since mid-first millennium CE, numbers were seldom written, until the
recent centuries, using symbols for the digits as we do today, whether in literary or in scientific
works. The reason was that the works were composed in poetic forms, and it would be highly cum-
bersome, perhaps also incongruous, to fit expressions for numbers into metrical patterns. Instead,
digits, or segments of them, in the desired number were substituted by words that would convey
them; thus, for example, vedarandhrarasākṣi would stand for 2694, with veda for 4, randhra for 9,
rasa for 6 and akṣi for 2, (in reverse order). The system is known as bhūtasaṅkhyā, object numerals
or word numerals in English. Several different words could be adopted for the same digit, thus
giving considerable flexibility for usage in a poetic format.

There have been some notable compilations of the object-numerals (the words used to substitute
for the digits), including by H. R. Kapadia and more recently by K. S. Shukla, containing 449 and
945 entries respectively. The present paper discusses a list of 59 object numerals from the work
Viveka-Cintāmaṇī of Nijaguṇa Śivayogī. The latter was a philosopher who very likely flourished
in the 15𝑡ℎ century. The work describes in particular, in Kannada but with many Sanskrit terms,
philosophies from many Vedic, Buddhist, Jain and materialist works - the book was translated into
Marathi in 1604 and into Sanskrit in 1652. The focus of the paper is on the object numerals listed
in the work. Comparisons of entries are made with those from the earlier compilations mentioned
above. The paper also provides a good introduction to the topic of object numerals, including
some of the history.

5.2 Adrian Rice, An enchantress of number? Reassessing the mathematical reputation of Ada
Lovelace, Notices of the American Mathematical Society, Vol. 71 (2024), no. 3, pp. 374-385.

Ada Lovelace (1815-1852), one of the earliest celebrated women mathematicians from the mod-
ern times, is renowned for her 1843-paper containing a theoretical account of the analytical engine
designed by Charles Babbage, which is an important milestone in the development of computers;
incidentally, she was the daughter of the renowned poet Lord Byron, but was raised by her mother,
as the parents got divorced. The last appendix in the 66-page long paper, mentioned as her “chief
claim to fame” contains some thoughts on the possibility of artificial intelligence, and an outline
of an iterative process by which Babbage’s machine could compute the Bernoulli numbers.

In the subsequent period however, in parallel with the appreciation of her work, there have been
misgivings in some quarters, casting doubts on her ability to make such a technical contribution.
In this context the present article takes up a reassessment of her mathematical ability, analyzing
what mathematical topics she would have been exposed to in the ten year period until the 1843
paper, the changing perspectives on her over a period, and the arguments involved in the negative
assessments concerned. The author notes that research on this, based on study of archival material,
in collaboration with Christopher Hollings and Ursula Martin, has led to two papers and a book,
and that it provides “strong evidence that she did indeed have the mathematical competence to
write and understand the mathematics contained in her famous paper of 1843”.

□ □ □
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6. Problem Corner

Udayan Prajapati
Mathematics Department, St. Xavier’s College, Ahmedabad

Email: udayan.prajapati@gmail.com

In the January 2025 issue of TMC Bulletin, we posed two problems, one from Geometry and one
from Number Theory. So far, we have received a solution of problem from Geometry from Anmol
Mishra form Valsad, Gujarat. However, we have not received any solution for the other problem.
The solution provided by Anmol is correct but lengthy and hence we present here, solution provided
by problem proposer, Priyamvad Srivastav.
We would like to emphasize here that problem solving is an important activity in the process of
learning mathematics. Hence, we appeal to all the teachers to encourage their students to attempt
solving problems posed in this section.
In this issue, we pose two problems one from Number Theory by Dr. Vinaykumar Acharya and
one form Combinatorics by Dr. Udayan Prajapati for our readers. Readers are invited to email
their solutions to Dr. Udayan Prajapati (ganit.spardha@gmail.com), Coordinator, Problem Corner
before 10𝑡ℎ June, 2025. Most innovative solution will be published in the subsequent issue of the
Bulletin.
The first Problem posed in the last issue:
Let 𝐴𝐵𝐶 be an actute angled triangle inscribed in a circle of radius 𝑅. Suppose 𝑃 lies in the
interior of the triangle such that 𝑃𝐵 ≠ 𝑃𝐶, ∠𝐵𝑃𝐶 = 2∠𝐵𝐴𝐶 and 𝑃𝐴2 + 𝑃𝐵 × 𝑃𝐶 = 2𝑅2. If 𝑄
is the incenter of the triangle 𝑃𝐵𝐶, show that ∠𝑄𝐵𝐴 = ∠𝑄𝐶𝐴.
Solution: (by the Problem proposer Priyamvad Srivastav)

Let 𝑂 be the circumcenter of triangle 𝐴𝐵𝐶 and denote the circum-
circle by Γ. Then 𝑂𝐴 = 𝑂𝐵 = 𝑂𝐶 = 𝑅.
Moreover, since ∠𝐵𝑃𝐶 = 2∠𝐵𝐴𝐶 = 2∠𝐴, it follows that
𝐵, 𝑃 , 𝑂, 𝐶 are concyclic.
Now, let 𝐶𝑃 meets Γ again in 𝐷. Then ∠𝐵𝐷𝐶 = ∠𝐴 and
∠𝑃𝐵𝐷 = ∠𝐵𝑃𝐶 − ∠𝐵𝐷𝐶 = 2∠𝐴 − ∠𝐴 = ∠𝑃𝐷𝐵, from which it
follows that 𝑃𝐵 = 𝑃𝐷.
Therefore, 𝑃𝐵 × 𝑃𝐶 = 𝑃𝐷 × 𝑃𝐶 = |𝑂𝑃 2 − 𝑅2| = 𝑅2 − 𝑂𝑃 2 (the
power of the point 𝑃 with respect to Γ).

Now, we have 2𝑅2 = 𝑃𝐴2 + 𝑃𝐵 × 𝑃𝐶 = 𝑃𝐴2 + 𝑅2 − 𝑂𝑃 2, and therefore 𝑃𝐴2 = 𝑅2 + 𝑂𝑃 2 =
𝑂𝐴2 + 𝑂𝑃 2, which implies that ∠𝐴𝑂𝑃 = 90∘.
Now, in cyclic quadrilateral BPOC, we have, ∠𝐵𝐶𝑃 = ∠𝐵𝑂𝑃 , and therefore, 2∠𝐶 = ∠𝐴𝑂𝐵 =
∠𝐴𝑂𝑃 + ∠𝐵𝑂𝑃 = 90∘ + ∠𝐵𝐶𝑃 .
And hence ∠𝐵𝐶𝑃 = 2∠𝐶 − 90∘. This immediately implies that ∠𝐶𝐵𝑃 = 2∠𝐵 − 90∘.
So, ∠𝑃𝐵𝐴 = ∠𝐴𝐵𝐶 − ∠𝐶𝐵𝑃 = ∠𝐵 − (2∠𝐵 − 90∘) = 90 ∘ −∠𝐵.
Similarly, ∠𝑃 𝐶𝐴 = 90∘ − ∠𝐶.
Now, since 𝑄 is the incenter of △𝑃𝐵𝐶, we have

∠𝑄𝐵𝐴 = ∠𝑄𝐵𝑃 + ∠𝑃𝐵𝐴 = 2∠𝐵 − 90∘

2 + 90∘ − ∠𝐵 = 45∘. Similarly,

∠𝑄𝐶𝐴 = ∠𝑄𝐶𝑃 + ∠𝑃𝐶𝐴 = 2∠𝐶 − 90∘

2 + 90∘ − ∠𝐶 = 45∘.
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Problems for this issue
Problem 1 (proposed by Vinay Acharya): Let 𝑎 and 𝑏 be distinct positive integers such that
3𝑎 + 2 is divisible by 3𝑏 + 2. Prove that 𝑎 > 𝑏2.
Problem 2 (proposed by Udayan Prajapati): Consider 𝑛 × 𝑛 grids having 𝑛2 vertices (𝑖, 𝑗)
for all 𝑖, 𝑗 = 1, 2, … , 𝑛. Find the number of pairs of unit squares having vertices from the
𝑛2 vertices such that the square regions have empty intersection (having no common edges
or corners).

□ □ □

7. International Calendar of Mathematics Events
Ramesh Kasilingam

Department of Mathematics, IITM, Chennai
Email: rameshk@iitm.ac.in

Note: Majority of events in July and August were included in the January Issue of TMCB. Here
we include only those events of July and August which were announced later.

July 2025

• July 21-25, 2025, Formalizing Class Field Theory, Mathematical Institute, University of
Oxford, UK. www.claymath.org/events/formalizing-class-field-theory/

• July 28-30, 2025, SIAM Conference on Computational Geometric Design (GD25), Montreal
Convention Center, Montreal, Quebec, Canada.
www.siam.org/conferences/cm/conference/gd25

August 2025

• August 10-12, 2025, The Mathematics of Various Entertaining Subjects Conference (MOVES
2025), NYU Courant, New York City, NY. momath.org/moves-conference/

• August 23-24, 2025, 2025 Fall Western Sectional Meeting, University of Denver, Denver, CO.
www.ams.org/meetings/sectional/2326_program.html

• August 29-31, 2025, 25th International Pure Mathematics Conference 2025 (Silver Jubilee
IPMC 2025), Islamabad, Pakistan. www.pmc.org.pk

September 2025

• September 1-4, 2025, Twelfth Conference on New Trends in the Applications of Differen-
tial Equations In Sciences (NTADES 2025), St. Constantin And Elena, Varna, Bulgaria.
www.ntades.eu

• September 1-6, 2025, XV Annual International Conference of the Georgian Mathematical
Union Batumi Shota Rustaveli State University, Batumi, Georgia. gmu.gtu.ge/conferences/

• September 2-4, 2025, 12𝑡ℎ International Congress on Fundamental and Applied Sciences 2025
(ICFAS2025), Fatih Sultan Mehmet Vakif University, Istanbul, Türkiye.
icfas2025.intsa.org/index.html

• September 3-6, 2025, XII International Scientific Conference “Modern Problems of Math-
ematics and Mechanics” The Institute of Mathematics and Mechanics of The Ministry of
Science and Education of The Republic of Azerbaijan, Baku/Azerbaijan. mpmm.imm.az/

• September 3-7, 2025, 9𝑡ℎ International Conference of Mathematical Sciences (ICMS 2025)
Maltepe University Maltepe, Istanbul, Turkey. www.maltepe.edu.tr/icms
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7. International Calendar of Mathematics Events

• September 4-6, 2025, International Conference on Mathematics and Mathematics Education
(ICMME2025), Istanbul Medeniyet University, Ãœskudar, Istanbul, Turkey. theicmme.org/

• September 8-10, 2025, Advancing The Frontiers - International Conference on Algebra, Anal-
ysis, and Applications, Kutaisi International University, Georgia. www.kiu.edu.ge/?m=530

• September 8-12, 2025, The 12𝑡ℎ International Conference on Stochastic Analysis and Its
Applications, University POLITEHNICA Bucharest, Bucharest, Romania.
sites.google.com/view/icsaa2025/acoel

• September 29 - October 1, 2025, Conference on New Innovations in Material Science Frank-
furt, Germany. momentera.org/conferences/material-science/

• September 29 - October 3, 2025, AIM Workshop: Multiscale Modeling of Ocular and Car-
diovascular Systems, American Institute of Mathematics, Pasadena, California.
aimath.org/workshops/upcoming/ocularcardio/

October 2025

• October 3-5, 2025, 2025 Fall Southeastern Sectional Meeting Tulane University, New Orleans,
LA. www.ams.org/meetings/sectional/2328_program.html

• October 13-17, 2025, AIM Workshop: Flag Algebras and Extremal Combinatorics, American
Institute of Mathematics, Pasadena, California.
aimath.org/workshops/upcoming/flagextremal/

• October 14-17, 2025, SIAM Conference on Mathematical and Computational Issues in The
Geosciences (GS25), Louisiana State University, Baton Rouge, Louisiana, U.S.
www.siam.org/conferences-events/siam-conferences/gs25/

• October 15-16, 2025, The 1𝑠𝑡 International Electronic Conference on Games (IECGA 2025)
Online With Live Sessions.
sciforum.net/event/IECGA2025?utm_source=AMS&utm_medium=AMScal

• October 18-19, 2025, 2025 Fall Central Sectional Meeting St. Louis University, St. Louis,
MO. www.ams.org/meetings/sectional/2322_program.html

• October 19-23, 2025, 7𝑡ℎ School on Belief Functions and Their Applications�Granada, Spain.
www.bfasociety.org/BFTA2025/

• October 20-24, 2025, New Trends of Stochastic Nonlinear Systems: Well-Posedeness, Dy-
namics and Numerics, CIRM, 163 Avenue De Luminy, Case 916 13288 Marseille Cedex 9,
France. conferences.cirm-math.fr/3374.html

• October 27-31, 2025, AIM Workshop: Computations in Stable Homotopy Theory American
Institute of Mathematics, Pasadena, California.
aimath.org/workshops/upcoming/compstabhom/

November 2025

• November 17-21, 2025, Recent Trends in Stochastic Partial Differential Equations, SL Math,
17 Gauss Way, Berkeley CA. www.slmath.org/workshops/1148�

• November 17-20, 2025, SIAM Conference on Analysis of Partial Differential Equations (PD25),
Sheraton Pittsburgh Hotel at Station Square Pittsburgh, Pennsylvania, U.S.
www.siam.org/conferences-events/siam-conferences/pd25/

□ □ □
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India at 
European Girl’s Mathema5cal Olympiad (EGMO) 2025 

In Pris5na, Kosovo (11-17, April, 2025) 

Sanjana Chacko Shreya Mundhada

Saee Patil Shreya Gupta Ray

Indian Contestants

Silver Medalists

Bronze Medalists

Rank Name P1 P2 P3 P4 P5 P6 Total Medal

28 Sanjana Chacko 7 4 1 7 7 0 26 Silver

42 Shreya Shantanu Mundhada 7 7 0 7 2 0 23 Silver

74 Saee Patil 4 2 1 7 4 0 18 Bronze

74 Shreya Gupta Ray 7 0 0 7 4 0 18 Bronze

NaGonal Result
12 India (4 contestants) 25 13 2 28 17 0 85 2S + 2B

We congratulate all the contestants for their excellent performance.
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Austrian-American logician, mathematician & philosopher. Had an immense 
effect upon scientific and philosophical thinking in the 20th century. Known for 
two Gödel incompleteness theorems. Developed a technique now known as 
Gödel numbering, which codes formal expressions as natural numbers. Also 
made important contributions to proof theory.

Kurt Gödel (28 April 1906 - 14 Jan. 1978)

A Dutch computer scientist, physicist, mathematician. Contributed to diverse 
areas of computing science, including compiler construction, operating systems, 
distributed systems, sequential and concurrent programming, software 
engineering principles, graph algorithms. Coined the phrase "structured 
programming". Known for Dijkstra’s shortest path Algorithm.

An American mathematician and logician who made major contributions to 
mathematical logic and the foundations of theoretical computer science. Best 
known for the lambda calculus, Church–Turing thesis, proving the undecidability 
of the Entscheidungs problem, Frege–Church ontology, and the Church–Rosser 
theorem. Also worked on philosophy of language.

Edsger Wybe Dijkstra (11 May 1930 - 06 May 2002)

Alonzo Church (14 June 1903 - 11 Aug. 1995)
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