The Mathematics Consortium

BULLETIN

A page from Goladhyaya of the Siddhanta Simmaﬂ;ﬁ

fesasSEras: ﬁaa—asﬁﬁnaﬁa ARRATARG 2 ISR MUAARAR TS 11
faREay LaMEIEn RARLE mnﬁn‘m;ammm.nm |
LAGAERIALDADZR | n, a /s e FHATTHATARINA T 00 AENS
jqimimﬂamm 0% kﬁmu&gmli | 'ﬁm‘
0 EAEGEATERARACY) 5 L Mmmasaenie ag e Saabud |
e A AT A N S WONARATIRY AN TAR
| AYAAHHUNARRD A

(jo[ayantm ‘J\fafaﬁayantm Q’ﬁa[aléayantm

Chief Editor: Shrikrishna G. Dani Managing Editor: Vijay D. Pathak




The Mathematics Consortium

Bulletin

April 2025 Vol. 6, Issue 4

Chief Editor: S. G. Dani Managing Editor: Vijay D. Pathak
Editors

Vinaykumar Acharya Sukumar Das Adhikari Ambat Vijayakumar Shrikrishna G. Dani
Amartya Kumar Dutta D. K. Ganguly Sudhir Ghorpade K. Gongopadhyay
Mohan C. Joshi Karmeshu Ramesh Kasilingam S. A. Katre
Ravindra S. Kulkarni A. K. Nandakumaran Udayan Prajapati Inder K. Rana
Ravi Rao Sharad S. Sane V. P. Saxena Devbhadra V. Shah
V. M. Sholapurkar Anupam Kumar Singh V. O. Thomas Ramesh Tikekar

Bankteshwar Tiwari Sanyasiraju VSS Yedida

Contents

Degree of Regularity of a Linear Diophantine Equatiod
lS'ukumar Das Adhikari and Sayan Goswami ....................... 1

A (nother) Proof of the Simplicity of Alternating Groupsl
lS'agnik Chakrabortd ...................................... 6

Spherical Trigonometry in Bhaskaracarya’s Siddhantasiromani (1150 CE)l

|M S. Sm'raﬂ .......................................... 12

What is Happening in the Mathematical World?l
lDevbhadra V. ShaA ...................................... 25

A Peep into History of Mathematicsl

.G Dand ... L e e e e e e e e e e e e e e e e 32
5. G. Danj

Problem Cornet{
|Udayan P'r’ajapad ....................................... 33

= es] [ [ [ [ [

International Calendar of Mathematics Eventsl
lRamesh Kasilingan{ ...................................... 34

About the Cover Page: The top image on the front cover is of a page from Goladhyaya of the Sid-
dhanta Siromani. The bottom images from left to right are astronomical instruments called Golayantra,
Nalakayantra, Phalakayantra respectively.

A Golayantra (Armillary sphere) is a model of objects in the sky, consisting of a spherical framework of
rings, centered on the Earth or the Sun, that represent lines of celestial longitude and latitude and other
astronomically important features. (hitps://www.scienceofgadgets.com/post/how-armillary-sphere-works)
Nalakayantra® or Nalikayantra (Tube instrument) is an optical instrument, having a long tube or tubes, used
to watch distant objects (hitps://www.wisdomlib.org/definition/nalikayantra)

The Phalakayantra® (Board Instrument) is an instrument devised by Bhaskara himself to measure the hour
angle, described in the yantradhyaya, the chapter on instruments in Goladhyaya (See Article 3 by Prof.
Sriram- page 21 of this issue).
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From the Editors’ Desk

The beauty of mathematics often lies in mysterious and profound connections between seemingly
distinct areas of Mathematics. One of the many such instances is the connection between Number
Theory and Quantum Mechanics.

The Riemann Zeta function in number theory is deeply connected with the distribution of prime
numbers. The non-trivial zeros of the function are conjectured to lie on the critical line with real
part 1/2 (the Riemann Hypothesis). Surprisingly, the statistical distribution of these zeros appears
to be the same as the energy levels of heavy nuclei in quantum mechanics (specifically, random
matrix theory). This suggests a deep, yet not fully understood, link between the fundamental
building blocks of numbers and the behavior of matter at the atomic level. The partition functions
of certain string theories in Physics are related to modular forms in Number theory, hinting at a
deep mathematical structure underlying the physical universe at its most fundamental level.
Brownian motion, the random movement of particles, can be described by stochastic differential
equations (SDE). Remarkably, the probability distribution of a Brownian particle at a given time
satisfies the heat equation, a fundamental partial differential equation in physics and engineering.
This connection allows us to use the tools of analysis (like PDEs) to understand probabilistic
phenomena and vice versa. For example, the Black—Scholes equation (a well-known SDE) estimates
the value of the financial instrument called option, over time in terms of the price of the underlying
asset.

One of the news items in this Issue describing current status of Hilbert’s 10*" problem, reveals
profound connections among Godel’s Impossibility theorem in Mathematical Logic, Halting prob-
lem of Turing machines in computer Science, and impossibility of determining whether a given
Diophantine equation has integer solutions in number theory.

In the opening article, Prof. S. D. Adhikari discusses some early Ramsey-type results, demonstrat-
ing that when a large structure is partitioned into finitely many parts, at least one of these parts
retains certain regularity properties of the original structure, in the context of r-colouring of sets.
In Article 2, Dr. Sagnik Chakraborty gives a self-contained proof of the simplicity of the alternating
groups based on elementary considerations of orders of elements, avoiding intricate manipulations
with the class equation.

There are various coordinate systems on a sphere associated with a positioning of celestial ob-
ject. While the relations among them can be obtained using modern spherical trigonometry, one
also finds a detailed explanation of these in the twelfth century Indian mathematician Bhaskara-
carya’s magnum opus, Siddhantasiromani (1150 CE). In Article 3, Prof. M. S. Sriram provides an
exposition on this theme.

In Article 4, Dr. D. V. Shah gives an account of significant developments in the Mathematical world
during recent past, including updates on ‘The Zero Height Conjecture’, Hilbert’s 10th problem,
Descartes Circle Theorem, ‘McKay conjecture’ and ‘Kakeya conjecture’. The article also includes
a brief write-up on important contributions of awardees of Leibniz Prize, and the 2025 Leroy P.
Steele Prizes in three different categories.

In Article 5, Prof. Dani reviews two recently published papers in History of Mathematics, one by
Dipak Jadhav and the other by Adrian Rice.

In the Problem Corner, Dr. Udayan Prajapati presents a solution to one of the two problems
posed in the January 2025 issue. Two new problems are also posed for our readers. Dr. Ramesh
Kasilingam gives a calendar of academic events, planned during July, 2025 to November, 2025, in
Article 7.

We are happy to bring out this forth issue of Volume 6 in April, 2025. We thank all the authors,
all the editors, our designers Mrs. Prajakta Holkar and Dr. R. D. Holkar, and all those who have
directly or indirectly helped us in bringing out this issue on time.

Chief Editor, TMC Bulletin



1. Degree of Regularity of a Linear Diophantine Equation

Sukumar Das Adhikari and Sayan Goswami
Ramakrishna Mission Vivekananda Educational and Research Institute, Belur, 711202, India
Email: adhikarisukumar@gmail.com and sayan92m@gmail.com

1.1 INTRODUCTION

For a positive integer 7, an r-colouring of a set S is a map x : S — {1,...,r}. If s is an element
of S, then x(s) is called the colour of s. A set T' C S is called monochromatic with respect to a
colouring y if y is constant on 7.

One observes that writing S = x (1) Ux *(2) U---Ux!(r), an r-colouring of a set S is nothing
but a partition of S into r parts.

In what follows, we shall be using the notation [n] = {1,2,...,n} and for a set S,
(‘Z) will denote the collection of k-subsets of S. The set of integers and the set of positive in-
tegers will respectively be denoted by Z and Z™.

In the next section, we will discuss some early Ramsey-type theorems. The existence of regular
substructures within general combinatorial structures is a fundamental phenomenon that charac-
terizes Ramsey theory. Most commonly, we encounter results demonstrating that when a large
structure is partitioned into finitely many parts, at least one of these parts retains certain regular-
ity properties of the original structure. Additionally, some Ramsey-theoretic results establish that
sufficiently large substructures exhibit specific regularities.

In Section 1.3, we shall take up our main theme.

1.2 SOME EARLY RAMSEY-TYPE THEOREMS

Schur [@] proved the following result in 1916, making it one of the earliest results in the field.

Theorem 1. (Schur’s Theorem ) Given a positive integer r, there is a positive integer S(r),
such that for any r-colouring of [S(r)], 3 a monochromatic subset {x,y,z} of [S(r)] such that
x+y = z. (The situation is described by saying that the equation x +y = z has a monochromatic
solution in [S(r)].)

By a Compactness argument (see [@], for instance), the above result is equivalent to the
following.

Theorem 2. Given a positive integer r, for any r-colouring of Z*, the equation x+y = z has a
monochromatic solution in Z.".

The classical Ramsey theorem [@], which appeared in 1930 and was later rediscovered by Erdds
and Szekeres [H] in 1935, can be viewed as a generalization of the pigeonhole principle. The theorem
originally appeared as a lemma in the above mentioned foundational work [[L5] on Mathematical
logic.

Theorem 3. (Ramsey’s Theorem) Given positive integers k,r,l[(> k), there exists a positive
integer n = n(k,r,l) such that for any r-colouring of ([Z]), there is an l-subset L = {cy,...,¢;} C [n]

such that the elements of (é) are of the same colour.

After the result of Ramsey was rediscovered by Erdos and Szekeres, the branch of combinatorics
known as Ramsey Theory developed, and with hindsight, we can now see the unifying features of
the early Ramsey-type theorems, several of which appeared before Ramsey’s theorem, which are
seemingly unrelated.

We observe that Theorem @] can be deduced from Theorem [E]

Take S(r) = n(k,r,l), where n(k,r,l) is as in Theorem [B]. Now, any colouring x on [S(r)]
induces an r-colouring x* of ([Sg")]):

X" ({i,5}) = x(li =jl),i # j € [S(r)].

n 16
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By the definition of S(r), 3 {a,b,c} C [S(r)], a < b < ¢ such that

X"({a,b}) = x*({b,c}) = x"({¢, a}),

that is,
x(b—a) =x(c—b) = x(c—a).

However, (b—a)+ (¢ —b) = (¢ —a). Hence the colours must coincide.

O
Another Ramsey-type theorem which appeared before Ramsey’s theorem is the theorem of van
der Waerden [R0] which led to many interesting developments in combinatorics and number theory.

Theorem 4. (van der Waerden’s Theorem) Given k,r € Z*, there exists W (k,r) € Z* such
that for any r-colouring of (W (k,r)] = {1,2,--,W(k,r)}, there is a monochromatic arithmetic
progression (A.P.) of k terms.

The following statement can be established by applying induction on the number of colours in
van der Waerden’s theorem:

Theorem 5. Given k,r,s € ZT, there exists N = N(k,r,s) € Z" such that for any r-colouring
of [N], there are a,d € Z* such that the set

{a,a+d,,a+kd} U{sd} C [N]
s monochromatic.

Remark 1. Taking s = 1 in the above, a monochromatic set {a,a +d,} U{d} already implies
Schur’s theorem. We shall see later that a much stronger statement follows from the above theorem.

1.3 A THEOREM OF RADO AND THE NOTION OF DEGREE OF REGULARITY

From Schur’s theorem and a special case of van der Waerden’s theorem one sees that for any finite
colouring of Z", there are monochromatic solutions of the following equations:

vty = z
rT+z = 2.

One is naturally led to the question that given an equation ¢,z +--+c¢,x,, =0, ¢;(#¥0) € Z,
when does it have a monochromatic solution (z Ty )-

In fact, successful investigations of Rado (][@], [E;, [@]) provided necessary and sufficient
conditions for a system of homogeneous linear equations over Z to possess monochromatic solutions
in any finite colouring of Z*. Here we state the following abridged version.

Theorem 6. (Rado) Given an equation

it has a monochromatic solution (xy, --,x,), where x;’s may not be distinct, in Z with respect
to any finite colouring if and only if some non-empty subset of {cy,...,c,} sums to zero.

Remark 2. To prove that the condition in the above theorem is sufficient, one may use (see ,
for instance) Theorem /B] It should be noted that from the general version_of Rado’s theorem
(which we are not taking up here), van der Waerden’s theorem follows (see . For necessity,
one uses the so called super modulo colour S, (see .

n 26



1. Degree of Regularity of a Linear Diophantine Equation

Definition. If an equation L : ¢;zy + -+ + ¢,,z,, = 0 over Z has a monochromatic solution in Z*
with respect to any finite colouring of Z*, it is called reqular over Z™*.

One observes that if the equation (L) is not regular, then there is a super modulo colour S,
for which (L) is not regular. However, S, is a (p — 1)-colouring and depending on the coefficients,
p has to be chosen large.

Rado made the conjecture that there is a function r : Z* — Z* such that given any equation
L:c¢x+-+c,x, = 0 with integer coefficients which is not regular over Z*, there exists a
partition of Z* into at most r(n) parts with no part containing a solution to the equation.

We state it for a single homogeneous equation as it has been proved by Rado EE] that if the
conjecture is true for a single equation, then it is true for a system of finitely many linear equations,
and Fox and Kleitman [§] have shown that if the conjecture is true for a linear homogeneous
equation, then it is true for any linear equation. This conjecture is known as Rado’s Boundedness
Congjecture.

The first nontrivial case of the conjecture has been proved by Fox and Kleitman [E] where it
was shown that r(3) < 24.

Definition. Givenn € Z*, the equation (L) is said to be n-regular over Z* if, for every n-colouring

of Z*, there exists a monochromatic solution z € (ZJr)kJr1 to (L). The degree of regularity of (L)
is the largest integer n > 0, if any, such that (L) is n-regular. This (possibly infinite) number is
denoted by dor(L). If dor(L) = oo, then (L) is regular.

In general one speaks about n-regularity over A C Z and defines dor 4(L). For any A C B C Z,
clearly 1 < dor4(L) < dorg(L). It is not very difficult to observe that if (L) is regular, and the
coordinate sum of « is nonzero, then dory, (L) = dor,4(L).

Now we state another conjecture of Rado [[L3].

Conjecture. For each positive integer r, there is a linear homogeneous equation that has degree
of regularity r.

Alexeev and Tsimerman @ roved the conjecture in 2010. Later, a proof of the following
conjecture of Fox and Radoi¢i¢ [g] by Golowich [@] supplied another proof of the above conjecture
of Rado.

Conjecture (Fox and Radoiéi¢). The degree of regularity of the following is (n — 1):

T+ 2wy + -+ 2" 2y, =21

n-
Recently, Adhikari and Goswami [@] have shown that for every m,n € Z%, there exists an
m-degree homogeneous equation that is n-regular but not (n + 1)-regular.
Next we come to a conjecture due to Fox and Kleitman [E] for a very specific linear Diophantine
equation.
Conjecture (Fox and Kleitman). Let £ > 1. There exists an integer b, > 1 such that the
degree of regularity of the 2k-variable equation L (b;),

T+t x =y — Y = by

is exactly 2k — 1.

Fox and Kleitman [E] had shown that for any b € IN_, the equation Lj(b) is not 2k-regular.
Indeed, if b is not a multiple of k, then considering the coloring given by the residue class modulo k,
there is no monochromatic solution to the equation L, (b), and the equation is not even k-regular;
we are through.

So, we assume that b is a multiple of k£ and consider the following 2k-coloring of IN, :

For 1 <4 < 2k, the set of integers colored ¢ is defined to be

X, = ([6 = 1)b/k + 1,ib/k] + 2bj).
j=0
Now, the set X, — X, is independent of i. Since the set k(X; — X;) = Ujez([—b +k,b— k| + 25b)
is a union of translates of [—b+ k, b — k| by integer multiples of 2b, it cannot contain b. Therefore,
for any i, 1 <i <2k, k(X, — X;) does not contain b. This shows that L () is not 2k-regular.
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When k = 2, Adhikari and Eliahou [E] proved the Fox-Kleitman conjecture by establishing the
following more general result:
For all positive integers b, we have

1 if b=1mod 2,
dor(Ly (b)) = 2 if b=2,4mod 6,
3 if b=0mod 6.

From a result of Strauss [@}, it follows that, for an appropriate b,, the equation L, (b,) is
Q(log k)-regular.

Adhikari, Balasubramanian, Eliahou and Grynkiewicz @] gave a very short proof of the fact
that, writing ¢;,_; = lem{i: i =1,2,...,k— 1}, the equation Ly (c;_;) is (k — 1)-regular.

The full conjecture of Fox and Kleitman has been established by Schoen and Taczala [@] by
generalizing a theorem of Eberhard, Green and Manners [B]

Adhikari, Boza, Eliahou, Revuelta, Sanz [B] considered the 4-variable Diophantine quadratic
equation (x; —y;)(x9 —ys) = b, denoted by Q(b), where b is a given positive integer.

This equation is not regular. Indeed, it is not b-regular, and actually not even s-regular where
s = [Vb] + 1, as witnessed by the s-coloring given by the class mod s. For if @y, y,, Z,,yy are all
congruent mod s, then (z; —y;)(z4 — ys) is divisible by s, and hence cannot equal b since s> > b.
That is, we have dor(Q(b)) < [Vb].

It was shown in [E] that, nevertheless, the numbers dor(Q(b)) are unbounded as b varies:

Theorem 7. Given a positive integer r, there is a positive integer b = b(r) such that the equation
(xy —yy)(Ty —Yy) = b is r-regular.

In the proof of the above, the following result was used in [E]

Theorem 8. (Szemerédi). Given a desired length k € Z" and a specified density 0 < 6 < 1,
there exists a positive integer N = N (k,§) such that every subset A C [1, N] of density |A|/N > o
contains an arithmetic progression of length k.

Theorem (B) was further generalized by Bidisha Roy and Subha Sarkar [@]
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How many subspaces V' of C" are there which satisfy the cyclic property:

“If (a,...,a,) € V, then (a,,a,...,a,_;) € V’?

Vi = {(a,a,...,a)|la € C} and V, = {(ay,...,a,) € C"|ay + ... +a,, = 0} are examples of
such subspaces. Also {(0,...,0)} and C™ are trivial examples of such subspaces. Are there
any more?

See the next issue of TMCB.




2. A(nother) Proof of the Simplicity of Alternating Groups

Sagnik Chakraborty
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G.T. Road, P.O. Belur Math, Howrah, Kolkata - 711 202.
Email: jusagnik28@gmail.com

ABSTRACT. The aim of this note is to give a self-contained elementary proof of the simplicity of
alternating groups which avoids using clever manipulations of cycle decompositions of permutations
as far as possible. We employ simple counting arguments to achieve this, instead of taking the
more familiar route using class equations.

2.1 INTRODUCTION

Every graduate student in mathematics, at some point or other, comes across a somewhat loose
statement like ‘alternating groups are simple’ (not entirely correct since the real story begins at
n = 5), or at least its more precise but weaker version that ‘A; is simple’. However, such a
statement remains a folklore for the majority of students. The main reason behind this is that
the proof of A,,’s being simple for all n > 5, involves several steps. While none of these steps are
particularly difficult to prove, the totality of the arguments often appears to be daunting, at least
in its first appearance. The standard proofs of this fact either use clever manipulations using cycle
decompositions of permutations, or a careful investigation of the class equations of Ay and Ag, or
a combination of both. The first approach involves a generous amount of trial and error unless
one is able to memorize the clever tricks used in the cycle manipulations. On the other hand, the
second approach of using class equations, though algorithmic, leaves no choice but to go through
rather mundane computations.

In this note, we present a proof of the simplicity of the alternating groups A, for n > 5, which
does not involve too many computations using cycle decompositions. Also, it makes no use of class
equations, something which plays a pivotal role in most standard proofs. The key idea behind our
proof is a certain counting technique for finite groups, which, together with the use of embeddings
of S, (or, A,)in S, ., (or, A, ;) allows us to avoid class equations.

Here is the basic layout of the paper. In §2, we recall some standard definitions as well as some
basic facts about symmetric and alternating groups, which are used in this article. It also records
an easy but useful observation about symmetric groups (Proposition 2.2), which practically allows
us to cut down the size of symmetric and alternating groups. We note a well-known counting
result for finite groups in Lemma 2.2, which is an essential ingredient in the proof of the simplicity
of Ag.

In §3, we separately give a proof of the simplicity of A;. The reason for this is twofold. Firstly,
some readers may only be interested in the simplicity of Ay, without bothering too much about
the simplicity of alternating groups of higher order. And secondly, the proof of the fact that Ay is
simple is so simple (pun intended), compared to the general case, that one can prove it without even
having any substantial knowledge about the structure of alternating groups. A similar argument
for the simplicity of A5 can be found in [3].

In §4, we first prove that Ag4 is simple. The crucial fact used in the proof is that Ay does not have
any proper normal subgroup, which contains a 3-cycle (Lemma 4.2). We use the simplicity of Ay,
together with Lemma 2.2, to show that every non-trivial normal subgroup of Ag, in fact, contains
a 3-cycle, thereby proving that Ay is simple. Finally, an application of Proposition 2.2 reveals that
the simplicity of A5 and Ay is sufficient to conclude the A,, is simple for all n > 5.

2.2 PRELIMINARIES

Definitions and conventions. A nontrivial group G is called simple if it has no normal subgroup
other than the obvious ones, namely the trivial subgroup {e} and the whole group G.

If X is a set, the set of all bijections of X forms a group with respect to composition of functions,
where the identity map plays the role of the identity element. It is called the symmetric group
over X, and is denoted by Sy or Sym(X). The elements of Sy, i.e., bijections of X, are also called
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2. A(nother) Proof of the Simplicity of Alternating Groups

permutations of X. A permutation is called non-trivial if it is not the identity map. The name
symmetric group, which carries a distinct geometric flavor, is inspired by the fact that permutations
of X are nothing but (set-theoretic) symmetries of X.

If X and Y are two sets and f : X — Y is a bijection, then f induces an isomorphism of groups
f: Sy — Sy, given by f(o):= fooo f~!  where o denotes the composition of functions.

If X is a non-empty finite set consisting of n elements, then Sy is called the symmetric group
of degree n, and is usually denoted by S,,. It is customary to think of S, as the group of all
permutations of the set IN,, := {1,2,...,n}, and the identity element of S,, is denoted by e. Note
that S,, contains n! elements. We will be only interested in finite symmetric groups.

If n is a positive integer and o, 7 € S,,, we will denote the product of ¢ and 7 by o - 7, or simply by
o if there is no room for confusion. We follow the convention of applying functions from right to
left, i.e., (o-7)(3) := o(7(7)) for all i € N,,. Two permutations 0,7 € S,, are said to be conjugates
if there exists a permutation € S,, such that 7 = -0 -n~!. Note that conjugacy is an equivalence
relation on S,,.

If o € S, the support of o, denoted by supp o, is defined to be the set {i € N, |o(¢) # i}. On the
other hand, i € IN,, is called a fized point of o if o(i) = i. Clearly, the set of all fixed points of o is
nothing but the complement of its support. A permutation o acts trivially on the elements outside
its support, as if it cannot ‘see’ them. We call two permutations o, 7 € S,, disjoint if supp ocNsupp
T =0. If 0,7 € S, have disjoint supports, then o7 = 70, simply because o acts as the identity
map on the support of 7, and vice versa. However, the converse is false since every non-trivial
permutation 7 € S, commutes with itself!

Let n be a positive integer and o € S,,. A set Y C IN,, is called o-invariant if o(i) € Y for all
i € Y. The minimal non-empty o-invariant subsets of IN,, (with respect to set inclusion) are called
the orbits of 0. An orbit of o is called trivial if it contains only one element; otherwise, it is called
non-trivial. Note that the trivial orbits of o correspond to its fixed points. It is easy to see that
the orbits of o give rise to a partition of IN,,. An experienced reader will not fail to recognize that
we are essentially speaking in the language of group actions. But we consciously avoid introducing
group actions as we do not need them.

A permutation o € S, is called a cycle if it has exactly one non-trivial orbit. The length of a cycle
o is defined to be the number of elements in its unique non-trivial orbit. Note that the length of
a cycle may take values between 2 to n. In particular, for us, the identity map is not a cycle. If o
is a cycle of length r, we call it an r-cycle. Other than the identity element, the simplest possible
permutations are the 2-cycles, which are also known as transpositions.

If 0 € S,,, the cycle type of o is defined to be the finite non-increasing sequence (nq, ..., n,), where
ny,...,n; are the sizes of the orbits of o, arranged in a non-increasing order, so that ). n, = n.
Clearly, the number of different possible cycle types of the elements of S,, is the same as the number
of partitions of n.

A permutation o € S,, is called an even permutation if o can be written as a finite product of an
even number of transpositions. As customary, the empty product is defined as the identity element
of S,,. Since every permutation can be written as a finite product of transpositions (see Proposition
2.1 below), it immediately follows that the set of all even permutations of S,, is a normal subgroup
of S,, (Do not forget that 0 is an even number!). We call it the alternating group of degree n, and
denote it by A,. Note that both A; and A, are trivial groups.

In the following proposition, we record some basic facts about symmetric and alternating groups,
which we will freely use in the sequel. The proofs can be found in any standard graduate-level
textbook on abstract algebra like [1], [2], [4] or [5] (for example, see Section 4 of Chapter IV of [1]).
By no means, this list is exhaustive, as there are hundreds of good algebra books available on the
market.

Proposition 2.1. Let n be a positive integer.

(a) Every permutation in S,, can be written as a finite product of disjoint cycles.
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b) A permutation in S,, is either a product of an even number of transpositions or an odd
n
number of transposition, but not both.

(c) Every r-cycle in S,, can be written as a product of » — 1 transpositions. In particular, an
r-cycle is an even permutation if and only if 7 is odd.

(d) The symmetric group S,, is generated by all transpositions of S, .

(e) For all n > 2, there exist surjective group homomorphisms sgn : S, — {+1}, called the sign
map, whose kernel is A4,,.
In particular, A, contains %’ elements for all n > 2.

(f) If o :=(ay aqg ... a,) is an r-cycle in S,,, then

707 = (1(ay) T(ay) ... 7(a,))
forall T € S,,.

(g) Two permutations o,7 € S,, are conjugates (in .S,)) if and only if they have the same cycle
type.

We also need to analyze the centers of symmetric and alternating groups. Recall that the center
of a group G, denoted by Z(G), is defined as

Z(G):={a € G |ag=gaforall g G}.

Lemma 2.1. The center of S,, (respectively, A,) is trivial for all n > 3 (respectively, n > 4).

Proof. First we consider the case of symmetric groups. Let n > 3 and ¢ € S,, a non-trivial

permutation. Then there exists ¢ € IN,, such that o(i) = j # i. As n > 3, we can find an element
k€ IN,\{7,7}. Then it is clear that ¢ does not commute with the transposition 7 := (j k), as
(0-7)(i) # (7-0)(i).
As for alternating groups, note that Aj is the cyclic group of order 3. Solet n >4 and o € A,, be
a non-trivial even permutation. As before, there exists an element i € IN,, such that o(i) = j # 7.
Then (j k), as already noted, does not commute with o for all & € IN,\{7, j}. But (j k) is not an
even permutation. So we choose another element [ € IN, \{4, j, k}, and observe that o does not
commute with the 3-cycle 7:= (j k1), as (o - 7)(i) # (7-0)(3).

Remark 2.1. In §4, we will prove that alternating groups are, in fact, generated by all 3-cycles.
So, in hindsight, it is clear that one does not need to look beyond 3-cycles to determine the center
of A,,.

The following counting argument will be used in the proof of the simplicity of Ag.

Lemma 2.2. Let H, K be subgroups of a finite group G, and
HK :={hke G |he H ke K}.
Then |[HK| = l\g‘ﬁ'ﬁ' In particular, if |H| - |K| > |G|, then H N K is non-trivial.

Proof. Let ¢ : H x K — G be the set-theoretic map, defined as ¢(h, k) := hk~!. Since K is a
subgroup of G, by definition, the image of ¢ is HK. As |H x K| = |H| - |K|, the assertion follows
if we can show that the pre-image of every element of H K contains exactly |H N K| elements. Let
g:=hk™' € HK. If y € HN K, then ¢(hy,ky) = (hy)(ky)~* = hk~!. So, the pre-image of g
contains at least |H N K| elements. Conversely, let hy € H,k; € K be such that ¢(hy, k) = g.
Then h ky! = hk™!, implying that h™'h, = k™'k; € HN K. Setting y := h™'hy = k7 'k, it is
clear that hy = hy and k; = ky. Therefore, the pre-image of g contains exactly |H N K| elements,
and hence the assertion follows. The second claim is obvious since |[HK| < |G|.

Let Sy be the symmetric group over a set X, and Y a subset of X. Then one may identify Sy
with the set of all permutations of X, which do not disturb any element outside Y. This simple
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2. A(nother) Proof of the Simplicity of Alternating Groups

observation about symmetric groups, which we formally record as the following proposition, will
later allow us to reduce the sizes of symmetric and alternating groups.

Proposition 2.2. Let X be a non-empty subset of IN,, containing r elements. Let Hy C S,
be the set of all permutations, which fix every element outside X. Then Hy is a subgroup of S,,.
Further, if X := {ay,...,a,} and f: N, — X is the set-theoretic function which sends i to a, for
all 4, then f: S, — Hy, defined as
~ foUof_1 (:I}) ifze X,
(Fio))(a) = {< )

x otherwise,
for all o € S,, is a group isomorphism, which preserves [-cycles for all 2 <[ < r. In particular,
if Ky is the set of all even permutations of S,,, which fix every element outside X, then Ky =
HynA, = f(4,).
Proof. The routine veriﬁcatioms~ are left as an exercise for the reader. Note that if o :=
(by by -+ by) € S, is an l-cycle, then f(o) = (f(by) f(by) - f(by))-

2.3 Ag IS SIMPLE

The simplicity of A5 turns out to be an immediate consequence of the following observation.

Lemma 3.1. Let G be a group and N a normal subgroup of G with a finite index. Let x € G
be an element of finite order. If the order of z is relatively prime to [G : N], the index of N in G,
then x € N. Thus N contains all elements of G whose orders are coprime to [G : N].

Proof. Let 7 : G — G/N be the natural projection, which takes an element g € G to the
corresponding left coset gN. Then, by Lagrange’s theorem, the order of 7(z) divides the order of
x as well as [G : N|, implying that the order of w(x) = N is one, or equivalently, x € N.

Remark 3.1. The above result may fail if NV is not a normal subgroup of G. For example, if
we take G := S; and H the cyclic subgroup of order 2 generated by (1 2), then the 2-cycle (1 3)
is not contained in H.

Theorem 3.1. A; is a simple group.

Proof. Looking at the possible cycle types of various elements of A5, it is easy to see that A

consists of the identity element, twenty-four 5-cycles, twenty 3-cycles and fifteen elements which
are products of two disjoint 2-cycles. Consequently, A5 contains 24 elements of order 5, 20 elements
of order 3 and 15 elements of order 2.
Now, let N be a non-trivial normal subgroup of A;. By Lagrange’s theorem, the possible orders
of N are 2,3,4,5,6,10,12,15,20 and 30. If |[N| = 2, then N = {e, o}, for some o € A, satisfying
0?2 = e. Then for each 7 € A;, Tor ! € N, implying that 707! = o. But that means o is
contained in the center of Ay, which is a contradiction as the center of Ay is trivial by Lemma 2.1.
We now invite the reader to use Lemma 3.1 in verifying that Ay cannot contain a normal subgroup
of the remaining possible orders. For example, if N is a normal subgroup of order 12, then
[G : N] =5, s0 by Lemma 3.1, N must contain all elements of Ay of order 3, which is not possible
as Ay contains 20 elements of order 3. As for one more example, if IV is of order 30 then /N has
index 2, so IV contains all elements of order 3 and 5, implying that IV contains at least 20 + 24 = 44
elements, which is not possible.

2.4 A, 1S SIMPLE FOR ALL 1 > 6

First, we prove that A is simple. For that, we need a few preparatory results which are interesting
in their own right. Recall that every permutation in S, can be written as a finite product of
transpositions, i.e., 2-cycles. However, 2-cycles are odd permutations; and therefore, are not
elements of A,. So we look at 3-cycles, which are even permutations, and it should not come as a
surprise to the reader that alternating groups are generated by 3-cycles.
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Lemma 4.1. Every alternating group is generated by its 3-cycles.

Proof. The alternating groups A; and A, are trivial; and A4 is a cyclic group of order 3, which

is generated by each of its two 3-cycles (1 2 3) and (1 3 2). Next, in A,, there are eight 3-cycles.
With the order of A, being 12, it is clear from Lagrange’s theorem that no proper subgroup of
A, can contain all 3-cycles. So A, is also generated by 3-cycles. Now, we consider A,, for some
n > 5. Since every even permutation can be written as a product of the product of a pair of
transpositions, it is sufficient to prove that the product of every pair of transpositions can be
written as a finite product of 3-cycles. So, we consider two transpositions (a b),(c d) € S,,, and
let o0 := (c d)(a b) € A,,. We want to prove that o can be written as a (finite) product of 3-cycles.
We can find a set X := {a;,a5,a3,a,} C IN,, consisting of four elements, such that a,b,c,d € X
(we do this because the two transpositions (a b) and (¢ d) may not be disjoint).
Let Ky C A, be the subset of all even permutations which fix every element outside X. Then
Ky = Hx N A, and by Proposition 2.2, there exists an isomorphism between Ky and A, which
preserves the 3-cycles. As the 3-cycles of A, generate A, and o € K, we conclude that o can be
written as a finite product of 3-cycles, which finishes the proof.

Remark 4.1. If a,b,¢,d € IN,, are distinct elements, then one may observe that (a ¢)(a b) =
(abec)and (¢ d)(ab)=(acd)(abd). This proof, although very neat, does not really tell us how
to anticipate the second equality. As a result, it may require some trial and error, and that is why
we chose to give a proof that is more conceptual. The preference will largely depend on the taste
of the reader, and we leave it at that.

It follows from Proposition 2.1(f) that any two 3-cycles of S,, are conjugates of each other.
Since Aj is a cyclic group of order 3, its 3-cycles are not conjugates; and we leave it as an easy
exercise for the reader to check that not all 3-cycles of A, are conjugates in A, (a little knowledge
about group actions, and, in particular, the orbit-stabilizer theorem might help!). However, starting
from n = 5, all 3-cycles of A,, are actually conjugates in A,,.

Lemma 4.2. Any two 3-cycles of A, are conjugates (in A,,) for all n > 5.
In particular, if a normal subgroup N < A, contains a 3-cycle, then N = A .

Proof. Let (a b ¢) and (d e f) be two 3-cycles in A,,. Since they are conjugates in S,,, there
exists a permutation 7 € S, such that 7(a b ¢)77! = (d e f). If 7 is an even permutation, we
are done. Otherwise, choose g,h € N, \{a, b, c}, and replace 7 by 7- (g h). This makes 7 an even
permutation satisfying 7(a b ¢)7 ! = (d e f).

The second assertion is trivial since all 3-cycles of A, are conjugates, and by lemma 4.1, they
generate A,,.

Therefore, if N < A, is a non-trivial normal subgroup for some n > 5, then to prove that
N = A, it is enough to show that N contains a 3-cycle. Sadly, we cannot prove it right now, but
we can prove something very close.

Lemma 4.3. Let N be a non-trivial normal subgroup of A,, for some n > 4. Then N contains
a product of two 3-cycles, which is not the identity element.

Proof. Since N is non-trivial, we can find a non-trivial permutation o € N. With the center
of A, being trivial and the set of all 3-cycles generating A,,, we can choose a 3-cycle 7 € A,, such
that o -7 # 7- 0, or equivalently, & := o-7-0~!- 771 is not the identity element. Since N is normal,
7-07'.771 € N, implying that & € N. As o-7-0! and 77! are both 3-cycles, the assertion

follows.

Remark 4.2. Can you see that the analogous assertion fails in A4?

Since we are interested in proving the simplicity of Ag, and Lemma 4.3 ensures that every
non-trivial normal subgroup of A, contains a non-trivial element that is a product of two 3-cycles,
let us try to find out what can be said about the number of elements in a normal subgroup of
Ag, which contains a product of two disjoint 3-cycles. We are interested in the size of the normal
subgroup as we want to apply Lemma 2.2.
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2. A(nother) Proof of the Simplicity of Alternating Groups

Lemma 4.4. Let N be a normal subgroup of Ay, which contains a product of two disjoint
3-cycles, say (a; ay a3) and (b; by bs). Then N contains at least 10 elements.

Proof. There are six permutations of the form (a, ¢)(as d), where ¢,d € {b;, by, b5} are distinct
elements. If o := (ay ¢)(ag d) € Ag is any such permutation, then o(a; ay az) (by by by)o ! =
(a; ¢ d)(o(by) o(by) o(bs)) is contained in N. Therefore, it is clear that N contains at least seven
elements, including the identity element. So we can use Lagrange’s theorem to conclude that
|N| > 10.

Remark 4.3. Let 0 € S5 be a product of two disjoint 3-cycles. Then it is easy to see that the
conjugacy class of o (in Sg) contains 40 elements. If one knows the basics of group actions, it is
not difficult to check that the conjugacy class of o in A4 contains either 20 or 40 elements. But
since we promised not to use group actions, we avoid this line of argument.

We are now in a position to prove that A, is simple for all n > 6.

Proposition 4.1. A is a simple group.

Proof. Let N <J A4 be a non-trivial normal subgroup. By Lemma 4.3, N contains a non-
identity element, which is a product of two 3-cycles, say ¢ and 7. First, suppose that ¢ and 7
have a common fixed point, say ¢ € INg. Let K, denote the set of all even permutations which
fix i. By Proposition 2.2, K] is isomorphic to A;. Since Ay is simple, and K] N N is a nontrivial
normal subgroup of K7, it follows that K] C N. Clearly, K, contains a 3-cycle, implying that
N = A4z Next, let us assume that o and 7 are disjoint 3-cycles. Let K denote the set of all
even permutations which fix 1. Again, by Proposition 2.2, K| is isomorphic to A;. By Lemma
4.4, N contains at least 10 elements. Since K] contains 60 elements, it follows form Lemma 2.2
that K7 NN is non-trivial. As K7 is simple and K] NN a non-trivial normal subgroup of K7j, we
conclude that K] C N. With K containing a 3-cycle, it follows that N = Ag.

Theorem 4.1. A is simple for all n > 6.

Proof. Let N < A,, be a non-trivial normal subgroup. By Lemma 4.3, N contains a non-trivial
product of two 3-cycles, say o and 7. As the supports of both ¢ and 7 contain three elements,
we can find a set X C IN,,, consisting of 6 elements, such that supp c Usupp 7 C X. Let Ky
denote the set of all elements of A, whose supports are contained in X. By Proposition 2.2, K
is isomorphic to Ag. So Ky is simple by Proposition 4.1, and Ky N N is a non-trivial normal
subgroup of K. Therefore, Ky C N. In particular, N contains a 3-cycle, implying that N = A, ,.
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ABSTRACT. There are various coordinates on a sphere like the zenith distance, hour angle,
azimuth, declination, right ascension, celestial longitude and latitude, etc. associated with a
celestial object. There are not all independent, and relations among them can be obtained using
modern spherical trigonometry. In ancient Indian astronomy texts, these were obtained using
various geometrical constructions. The twelfth century Indian astronomer Bhaskaracarya has
given detailed explanations of these relations in his magnum opus, Siddhantasiromani (1150 CE).
We give some representaive examples of these in this article.

3.1 INTRODUCTION

Bhaskaracarya is one of the greatest names in the history of ancient and medieval Indian mathe-
matics and astronomy. He was born in 1114 CE, and probably hailed from the region around the
present Patne or Patan in the western Indian province of Maharashtra. Bhaskara’s Lilavati (The
sportive one) on arithmetic and geometry, and Bijaganita (Algebra) are standard works on Indian
mathematics [3]. The Siddhantasiromani (‘Crest jewel among the treatises on astronomy’) com-
posed in 1150 CE by Bhaskarcarya is one of the most comprehensive treatises on Indian astronomy
B, B] These were canonical textbooks for students of astronomy and mathematics in India for the
next few centuries, and are taught in the Sanskrit institutes in India, even now*.

The Siddhantasiromani has two parts, namely, Grahaganita (‘Planetary computations’) and
Goladhyaya (‘Chapter on spherics™). Grahaganita expounds on all the standard calculations and
algorithms in astronomy of Bhaskara’s times. It has 460 verses in 12 chapters. Goladhyaya which
has more than 490 verses, has the definitions, more fundamental issues (like the nature of the
earth, the placement of stars and planets around it and so on), and the principles and theoretical
details of the calculations in Grahaganita. The verses in these two parts have been translated into
English with notes [[I], []]. An important feature of the Siddhantasiromani is that Bhaskara himself
has written a commentary on it, known as the ‘ Vasanabhasya’ or the ‘mitaksara’ which explains
all the algorithms contained in the verses, and also gives their derivations (upapattis). Recently,
we have translated the verses and the vasnabhasya of the Grahaganita part of the treatise, and
prepared detailed explanatory notes based on the bhasya [@]

Spherical trigonometry in the sense of relations among the variables on the celestial sphere is
very much needed for solving diurnal problems, eclipse calculations etc. It is natural that the Indian
astronomy texts deal with the relations among the spherical variables. The geometrical insights of
Bhaskara come into full play in handling such problems. We present some representative examples
of Bhaskara’s solutions of spherical problems in this article.

In Section 2, we introduce the celestial coordinates and spherical trigonometry relevant for this
article. In Section 3, we take up the geometrical constructions of Bhaskara to obtain expressions
for the declination and the right ascension (R.A.) of a celestial object on the ecliptic in terms of
its longitude. In Section 4, we discuss the very important expression for the zenith distance (z) in
terms of the latitude (¢), declination (J), and the hour angle (H). This is used by Bhaskara to
devise an instrument called “phalakayantra” (rectangular board instrument) to find the hour angle
of the Sun at any instant. In Section 5, we consider the expression for (z) in terms of (¢), (4),
and the azimuth (A) which is more difficult, as it involves the solution of a quadratic equation for

IThese include the Lal Bahadur Shastri Rashtriya Sanskrit Vidyapeetha in New Delhi, Benares Hindu University
and Sampurnanand Sanskrit Vishwavidyalaya in Varanasi, Madras Sanskrit College in Chennai, and Rashtriya
Sanskrit Vidyapeetha in Tirupati, to name a few.

2Spherical Geometry.
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3. Spherical Trigonometry in Bhaskaracarya’s Siddhantasiromani (1150 CE)

the cosine of the zenith distance (z). We summarise Bhaskara’s detailed method for solving the
problem. Spherical trigonometry is taken forward considerably by the astronomer-mathematicians
of the Kerala school (main works during 14!"-17*" century C.E.), and we touch upon this in Section
6 on the concluding remarks.

3.2 CELESTIAL COORDINATES AND SPHERICAL TRIGONOMETRY

Z (zenith)

Z (zenith)

(north celestial

s
Ni ; s
T W e
,ng.,,
(azimuth) (a) (b)
Z (zenith)
(north celestial

pole) P

(pole of the
ecliptic)

,&0‘ ///- S
o e (c)

Fig. 1. Celestial coordinates. (a). z,a, A, (b). H,0,«, (c). A, .

We depict the variables of interest on the sphere associated with a celestial object at X, like
the zenith distance (z = ZX), altitude (a = XB), azimuth (A = NB) in Fig. 1(a), hour angle
(H = ZPX), declination (6§ = X B), right ascension (a = I'B) in Fig. 1(b), and celestial longitude
(A = I'B), celestial latitude (8 = XB) in Fig. 1(c). Here I' is the vernal equinox (where the
celestial equator and the ecliptic intersect). We can obtain relations among them using spherical
trigonometry.

3.2.1 Basic relations in Modern Spherical Trigonometry

Now, spherical triangles are made of great circle arcs only. In the spherical triagle below, a, b, ¢ are
the sides (arc lengths; can be measured in angles also), and A, B and C' are the spherical angles.
In modern spherical trigonometry, we have the cosine formula,

cosa = cosbceosc+sinbsinccos A, and, similarly for cosb, and cosc, (3.1)

and the sine formula,

sina sinb sinc

sindA sinB sinC’

(3.2)

n 1360



TMC Bulletin, April 2025

Fig. 2. Spherical triangle with sides a, b, c and angles A, B, C.

Many more relations can be derived using these basic formulae and related spherical triangles.

3.3 SPHERICAL VARIABLES AND THE RELATIONS AMONG THEM IN INDIAN TEXTS

How did Indian texts handle the spherical variables and the relations among them? In the earliest

text on mathematical astronomy in India, namely, Aryabhatiya (499 CE) [d], one quarter is on
Gola (sphere). The formula for the declination,
sind = sinesin \, (3.3)

is used implicitly in this text, though not stated explicitly. In his commentary (Vasanabhasya)
on verses 47 and 48 in the second chapter (on “True longitudes of planets”) in the Grahaganita
part of Siddhantasiromani (c. 1150 CE) [3], Bhaskaracarya explains this relation using the “rule
of three” which would amount to comparing similar triangles.

Fig. 3. Declination (§ = A’OB’) of an object at A’

From now onwards, R is the radius of the (celestial) sphere. In Fig. 3, the plane of the equator
is that with points I', O, B, and the plane of the ecliptic is the one with points I, O, A. The angle
between them is € = AOB. Corresponding to a point A" on the ecliptic, arc 'A" = RA, where I' is
the intersection point of the two planes on the sphere, and A = FOA’A is the (celestial) longitude.
Let A’B’ be perpendicular to the plane of the equator. Then § = A’OB’ is the declination of A’.
Let A’O’ be perpendicular to OT'. Then,

A’B’ = Rsing, A’O’ = Rsin\, AB = Rsine, AO = R.
Now, triangles A’ B’O’ and ABO are similar. Hence,
A'B AB o Rsind  Rsine
A0~ 40" ' Rsinx R

sin d = sin esin A.

, OT,

3He has not given the geometrical construction in Fig. 3, which is however implicit.
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3. Spherical Trigonometry in Bhaskaracarya’s Siddhantasiromani (1150 CE)

3.8.1 Relation between the longitude, \ and the R.A., «
A verse in the Golapada (the quarter-part on spherics) Aryabhatiya [6] says:
istajyagunitamahoratravyasardhameva kastantyam|
svahoratrardhahrtam phalamajallankodayapragjya ||
Multiply the day radius corresponding to the greatest declination (on the ecliptic)
by the desired Rsine, and divide by the corresponding day radius: the result is the

Rsine of the right ascension measured from the first point of Aries along the equator.
[Translation by K. S. Shukla and K. V. Sarma]

Here,

the desired Rsine is R sin A,

the day-radius corrsponding to the greatest declination is R cose,
the day-radius is R cosd, and

the Rsine of the right ascension (R.A.) is Rsina.

Then,

Rsin A\ x Rcose
i — . 4
Rsina Reoss (3.4)

Aryabhatiya has only algorithms and no explanations. This can be easily derived using the sine
formula of modern spherical trigonometry.

S
r
Fig. 4. The longitude, A, and the R.A., a.

In Fig. 4, consider the spherical triangle I'PS. I'S = A, is an arc along the ecliptic, I'PS = «
is the R.A.. It is also an arc along the equator. PS = 90 — ¢, where ¢ is the declination, and
PT'S = 90 — ¢, where € is the obliquity of the ecliptic. Using the sine formula,

sinI'S sin PS sin A _cos 1)

— = , Or, — .
sin[PS  sin(90 —¢) sina  cose

) SINA COS €
So, sinag = ———
cosd

In his commentary (Vasanabhasya) on verses 54 and 55 in the second chapter (on the “True
longitudes of planets”) in the Grahaganita part of Siddhantasiromani [E], Bhaskara proves this
with a geometrical construction as shown in Fig. 5. We present the essence of Bhaskara’s proof in
the following.

In Fig. 5, the celestial equator, ecliptic and the diurnal circle of radius R cosd of the Sun at
S on the ecliptic, with longitude A and R.A. « are shown. Consider the vertical right triangle
with the hypotenuse marked “Rsin \” on the ecliptic plane, and with the “opposite side” (bhuja)
as a vertical dashed line marked “Rsin¢” in the plane of the equatorial horizon (Larka) which is
perpendicular to the celestial equator. Then, the “adjacent side” (koti) is on the diurnal circle of
S and is given by

\/R2 sin? A\ — R2sin% 6§ = \/R2 sin® A — R2sin” esin® A = Rsin \cose.
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But, this koti is actually R cosdsin «, as it is the Rsine of the R.A. « in a circle of radius R cosd,
and shown as such in the figure. Hence,

Rcosdsina = Rsin Acose, or,

. sin A cos e
sihoy = ———
cos 9

Rsind

R cosdsina

edliptic

Cdestial equator
Fig. 5. Geometrical construction for the relation between R sina and Rsin A

3.4 ZENITH DISTANCE (z) IN TERMS OF THE LATITUDE (¢), DECLINATION (d), AND
THE HOUR ANGLE (H)

z ¢

w

Fig. 6. Spherical triangle PZS with sides PZ = 90° — ¢, ZS5 = z, PS = 90° — 4, and angle
ZPS=H.

Consider a celestial object S, typically, the Sun. In the spherical triangle PZS in Fig. 6, ZS5 = z,
the zenith distance, PZ = 90° — ¢, where ¢ is the latitude, PS = 90 — ¢, where ¢ is the declination,
ZPS = H, the hour angle, and PZS = A, the Azimuth.

Applying the cosine formula to Z.S:

cos ZS = cos PZ cos PS + sin PZ sin PS cos ZPS, or, (3.5)

cos z = sin ¢ sind 4 cos ¢ cos d cos H.

What was the method of Bhaskara to obtain this relation? i

3.4.1 Bhaskara’s method for obtaining z in terms of ¢, and H

In Fig. 7, O is the centre of the celestial sphere of radius R. NPZS is the Meridian. At some instant,
the Sun is at S”. Its declination is §. S,.S,US’S,S, is the diurnal circle of the Sun with C as the
centre. Its radius is Rcosd. Just as the plane of the equator, the plane of the diurnal circle is
inclined to plane of horizon at an angle, 90° — ¢. S, T'S, is the Rising-Setting line of the Sun. The
straight line S,C'S; is parallel to this.

4See Reference [@}, pp. 370-376 for details.
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Fig. 7. Geometry for the zenith distance z for declination, d, and hour angle, H.

z = ZOS’ is the zenith distance of the Sun. It is also the angle corresponding to arc
zZS’.

H = ZPS’ is the hour angle of the Sun.

S’F is perpendicular to the horizon, and S’F = R cos z is the ‘Sarkw’ or the ‘Gnomon’.
OC = Rsin is perpendicular to UT.

CU = Rcos§ is the ‘dyujya’ or the ‘Day-radius’.

OCT is a right-triangle with OC = Rsiné and CTO = 90 — 6.

Hence, CT = Rsin 6322 Tt is called the ‘ksitijya’ or the ‘Earth-sine’

coso’

In verse 34 of the chapter on Triprasna in the Grahaganita part of Siddhantasiromani [E], hrti
is defined as the sum of dyujya (day-radius) and ksitijya (Earth-sine). This is UT. So,

sin ¢

hrti=UT = Rcosd + Rsind .
cos ¢

(3.7)

Draw UG perpendicular to the horizon. It is the ‘Dinardhasarikw’, or the ‘Mid-day gnomon”
UGT is a right triangle with UT'G = 90° — ¢. Then,

Mid-day gnomon = UG = cos¢ X hrti (= UT)
So, Mid-day gnomon = R cosdcos¢® + Rsindsin ¢. (3.8)

Draw S’C” perpendicular to UT. S'CC’ = H.
CS" =CU = Rcosd, CC’" = Rcosécos H.
C'U=CU—-CC"=Rcosé(l —cosH).

Draw C’V perpendicular to UG. One can easily see that the plane with the points
S’,C’,V is a horizontal plane. UV is called the Urdhva (Upwards), as it is the upper
portion of the Dinardhasanku (Mid-day Gnomon), UG. UC’V = 90 — ¢. Then,

Urdhva (Upwards) = UV = C"V sin(90° — ¢) = Rcosd cos ¢(1 — cos H).

This is how Urdhva is described in verses 58 and 59 of the mentioned chapter. Then in verse 60 it
is stated that,

Desired Gnomon, Rcosz = S'FF = VG=UG-UV
= Mid-day Gnomon — Upwards,
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or, Rcosz = Rsin¢gsind+ Rcos¢cosdcos H, (3.9)
or, cosz = sin¢sind+ cos¢cosdcosH, (3.10)

which is the desired result.
3.4.2 Hour angle, H in terms of z,¢,d, and the Phalakayantra (Board instrument) of
Bhaskara
The hour angle H can be determined in terms of z,d, and ¢, by rewriting equation (@) as,

Rcosz Rsin ¢siné

RcosH = — .
o8 €os ¢ cos § cos ¢ cos &

(3.11)

The phalakyantra (Board Instrument) is an instrument devised by Bhaskara himself to measure
the hour angle based on the above relation, and described in the yantradhyaya, the chapter on
instruments in  Goladhyaya [[q, [L4]. He is very proud of it, and introduces it thus:

“As others have not stated the [determination of] correct time from [observations us-
ing] a vertical circle with ease, I have attempted [to devise] an instrument called pha-
lakayantra, [which incorporates| the essence of calculations based on the true rationales
pertaining to the sphere, which I will explain clearly.”

v

M N

Fig. 8. Phalakayantra for measuring the hour angle, H.

In the upper part of the instrument, there is a circle with a radius of 30 units. There is a small hole
at the centre with a pin placed in it. This pin is the axis of the instrument. The circumference of
the circle is divided into “60 ghati s”E and 360 degrees. Each degree is made of 10 “palas”. There
is also a Pattika or an Index arm which is suspended vertically, with a hole at the centre. Also,
a horizontal line is drawn through the central hole, and lines parallel to it drawn below it at
equal intervals, for measuring distance along the vertical direction. The following is Bhaskara’s
instruction for using the instrument:

“Now hold the instrument so that the rays of the Sun shall illuminate both of its sides
equally [to secure its being in a vertical circle]; the place in the circumference marked
out by the shadow of the axis should be assumed by an intelligent man to be the Sun’s
place.”

“Now place the index arm on the axis and putting it over the Sun’s place, from the
point at the end of the yasti set off above or below depending on the [hemi|sphere
[above if the Sun is in the northern hemisphere, and below if it is in the southern
hemisphere], the Rsine of the ascensional difference (carajya). The distance from the
point where the sine [which meeting the end of the carajya thus set off,] cuts the circle,
to the perpendicular line will represent the nata (hour angle) in ghatikas.”

5A ghatt corresponds to 24 minutes of time.
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Rsin ¢ sind
cos¢ cosd

(Here yasti = where R is 30. carajya = ) [Translation by Wilkinson,

1861.]

__ R
cos ¢ cosd’

Now, the zenith dist of the Sun is z, and the altitude a = 90° — z.
ML = OMsina = OM cos z = —Rosz

cos¢ cosd”
Mark a point V' on ML such that
Rsin ¢ sind

cos¢ cosd °

MV = carajya =

Draw V'V’ parallel to OL, intersecting the circle at V’'. Draw V'L’ parallel to VL.
Then,

Rcosz Rsin ¢ sin §
cos¢ cosd  cos¢cosd
= Rcos H, from equation (11).

VL =VL=ML—-MV =

But V'L’ = RsinV’OL’ = RcosV'ON.

Hence, V’ON is the hour angle H. It is the number of divisions on the circle between N, and
the point V'’ at which the horizontal line from V intersects the circle.

3.5 ZENITH DISTANCE 2z IN TERMS OF THE LATITUDE ¢, THE DECLINATION & AND
THE AZIMUTH A

Let z and A be the zenith distance and the azimuth of the Sun (S) when its declination is ¢ at a
place with latitude ¢, as shown in the following figure (Fig. 9).

Z diurnal circle

celestial
equator

Here A is the angle between the north-south or the meridian circle, and the vertical passing through
S (PZ S). In the Indian texts, the azimuthal angle, termed the digamsa, is the angle between the
vertical passing through S and the prime vertical, which we denote by a. Clearly, A = 90° + a,
when 0° < A < 180°. In the figure, A = 90° + a.

Using the modern cosine formula for the side PS in the spherical triangle ZPS, where the
sides are PZ =90 — ¢, ZS = z, PS = 90 — §, and the angle PZS = A, we have

cos(90 —¢) =sind = cos(90 — ¢) cos z + sin(90 — ¢) sin z cos A,

or coszsing = sind+sinzsinacos¢ when A =90 + a. (3.12)
Now § can be found directly from ¢, z, and a from the above equation. However z cannot be found

directly in terms of §, ¢, and a, as both cos z and sin z appear in the equation. One would have to
solve a quadratic equation for sin z, after squaring both sides and using cos? z = 1 — sin® z.
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3.5.1 Bhaskara’s method for obtaining z in terms of ¢, and A: sanku, bhuja, agra, and
sankutala

In Fig. 9, the Sun rises at S,., moves along the diurnal circle and sets at S;. If we assume that
Sun’s declination d is constant through the day, the ‘rising- setting’ line, S,.5, would be parallel to
the east—west line. From S,, draw S,G perpendicular to the east—west line meeting it at G. S,G is
the “arkagra” or just “agra”. It is the distance between the ‘rising-setting’ line and the east-west
line.

Now the plane of the diurnal circle is inclined at an angle 90 — ¢ with the horizon. From G
draw G D perpendicular to the plane of the diurnal circle meeting it at D. Join S, D, which would
be perpendicular to GD. Clearly, D§tG =90 — ¢ and DéSt = ¢. S, DG is a latitudinal triangle
(a right-angled triangle with the latitude as one of the angles). Now GD = |Rsind|. Hence, agra
= 5,G = |R22|.

From S, draw SF perpendicular to the plane of the horizon. In Indian astronomy texts,
SF = Rcosz is called the “Sanku” or the gnomon and OF = Rsin z is called “drgjya”. Draw
RF perpendicular to the east-west line. RF = Rsinzsina and it is called the “bhuja”. It is the
distance between the base of the $aniku and the east-west line.

Extend F'R to meet the rising-setting line perpendicularly, at .S;,. S;, F' is the distance between
the base of the Sarnku, F' and the rising-settting line, and is called the “Sankutala” SS,F is a
latitudinal triangle, with S§hF = 90° — ¢. Hence, the Sankutala, S, F = SFEE;?) = Rcos zsz)r;ﬁ

To summarise,

SF : $anku = Rcosz, (3.13)
sin §

aori — 14
S,G : agra ‘RCOS¢ ) (3.14)
RF : bhuja = Rsinzsina, (3.15)

sin ¢
S, F : arikutala = R . 3.16
W o Sankutala coszcos¢ (3.16)

Multiplying the equation for cos zsin ¢ by R, dividing by cos ¢, and rearranging terms, we find:

sing Rsiné
cos¢p  cos¢

+Rsinzsina = Rcosz (3.17)

Now Fig. 9 corresponds to the case of a northern declination, that is, § = |4|, and A = 90° + a,
when we have to take the positive sign in the Lh.s. of the above equation. Hence,

bhuja = Sankutala — agra, & north, and A = 90° + a. (3.18)
7z diurnal circle
T T celestial

equator

Fig. 10. Geometry for the zenith distance, z for a northern declination and A < 90°.

Fig. 10. depicts the situation when the declination is north, and A = 90° — a, in which case, we
have to take the negative sign in the Lh.s. of the equation, and

bhuja = agra — Sankutala, 6 north, and A = 90° —a. (3.19)
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3. Spherical Trigonometry in Bhaskaracarya’s Siddhantasiromani (1150 CE)

Z celestial
equator

diurnal
circle

W S
Fig. 11. Geometry for the zenith distance, z for a southern declination and A > 90°.

__ Rsind

When the declination is south, § = —[d], and agra is = —2> 5 Here A = 90° 4 a, necessarily. In

this case, shown in Fig. 11,
bhuja = sankutala + agra, 6 south. (3.20)

Actually, these relations follow from the definitions of bhuja, Sankutala, and agra and the geometry
of the problem, as clear from the figures. They are equivalent to the cosine formula for the side
PS.

In the explanation (upapatti) for verse 30 of the third chapter of Gmhagam’ta[g], Bhaskara
states these relations H:

svagrasvasankutalayoryamyagoleyogah soumyetvantarani bhujo bhavati|

The sum of the agra and the Sankutala in the southern hemisphere, and their difference
in the northern hemisphere gives the bhuja.

3.5.2 Finding the zenith distance

The equation relating the bhuja, agra and Sarikutala is only the first step in solving for the Sariku,
R cos z, and the zenith distance, z from that. In the explanation (upapatti) for the verses 49, 50
and 51 in the chapter on Triprasna in the Grahaganita part of Siddhantasiromani [§], Bhaskara
casts the equation in terms of a ‘chaya- karpa’ or the ‘shadow hypotenuse’, and then discusses the
solution of the resulting quadratic equation. We first discuss the setting up of the equation, in the
following.

Sun’s diurnal circle

S

@ (ii)

Fig. 12. The 12-digit gnomon (dvadasangulasariku), the shadow (chaya) S and the
shadow-hypotenuse (chayakarna) K.

(0]

In Fig. 12, we consider the same situation as in Fig. 9, when the Sun has a declination ¢,
zenith distance z, and azimuth A, for a location with latitude ¢. OX is a 12-digit gnomon, or
“dvadasangula Sanku’: OX = 12. Then OY = § = 12 512 jg the shadow of this gnomon, or the

Cos z

6Reference [E], p. 57.
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“chaya”, and K = Cészz is the “chaya-karna”, or the shadow-hypotenuse. Draw Y () perpendicular
to the east-west line. Y@ = B = Ssina = 1232 sina, where A = 90° +a. B is called the
“chayabhuja”. In the figure, A = 90° + a.

Note that K? = S + 122 = S2 + 144.

Multiplying equation (17) by K = -2 and dividing by R, we find

cos z’

sin ¢ ERsiné

£B (chayabhuja) = 120220 — =20

(3.21)

On the equinoctial day, when § = 0, and the Sun moves on the equator, we note that the chayabhuja,
which is the distance between the tip of the shadow wnd the east-west line is a constant, s = 12%.
This is called the “palabha”. Hence, on the equinoctial day, the tip of the shadow of the gnomon
moves on a straight line parallel to the east-west line, at a distance equal to the palabha. Note
that the chayabhuja is the shadow itself at noon, when the Sun is on the meridian, and a = 90°.

Hence, the palabha, s = 12522 s the equinoctial mid-day shadow.

cos o’

Now, denoting the agra \Iif;“df] by A, and multiplying equation () by R, we find that
BR = sR ~ KA, ¢ north, (3.22)
BR =sR+ KA, ¢ south. (3.23)

Now, BR = ssina R = s D, where D = Rsina is the digjya. Squaring the equations (, )
and noting that K? = s? 4 144, we obtain the following equation for K:

(K2 —144)D? = K2 A? + 2K AsR + s?R?, “ +" for § south, “ —" for § north. (3.24)

After rearranging the terms, and dividing by D? — .42 we have the following quadratic equation
for K:

AsR 2R? + 144D?
K?¥F 2KD2 i/p _ 5 D2+— Vel Y+ " for § south, * —" for § north. (3.25)

Here it can be recollected that

Rsiné _ sin ¢ o
= \m\, s (palabha) = 12m,D (digjya) = Rsina. (3.26)

The procedure for solving the above quadratic equation for K is which is spelt out clearly in the
remaining part of the upapatti for the cited verses ¥, and the explanation in modern notation are

discussed in detail elsewhere [[L1]]. We summarise it below.
Two variables “ Adya” denoted by z, and “Anya” denoted by y are defined through the relations:

12
K (chayakarna) = P A (agra)
z

_ s2R?% +144D? AsR

Then, the formal solutions of the quadratic equation for K are given by:
K =y 4+ +/x+y2, for d south, and K = —y 4+ +/x + y2, for ¢ north. (3.28)

However, for the physical solutions, the zenith distance z < 90°, and K should be positive. We
consider the various cases now.
1. The declination ¢ is south.

"Reference [E], pp- 85-86.
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In this case, from Fig. 9, it is clear that the digjya, D is necessarily greater than the agra, A.
Then z is positive, and \/x +y? > y. Hence, for positive K, only the “+” sign in front of the
square root is permissible, and

K =y+ +/x+y?, for é south. (3.29)

2. The declination ¢ is north, and D > A.
In this case also, only the “4” sign in front of the square root is permissible, and

K =—y++/x+y?, for d north, and D > A. (3.30)

3. The declination ¢ is north, and D < A.
In this case, both x and y are negative, —y = |y|, and y/z + y? < |y|. Then both the solutions
result in positive K and

K =—y++/x+y?, for § north, and D < A. (3.31)

The two solutions correspond to the location of the Sun south and north of the prime verical with
the same value of a, and hence the same value of the digjya, D, but different values of A, namely
90° + a. All these cases are discussed by Bhaskara.

3.6 CONCLUDING REMARKS

Spherical trigonometry is very much needed for solving diurnal problems, eclipse calculations etc.
In Indian texts correct solutions were indeed found for most of the problems using appropriate
geometrical constructions. Bhaskara (born 1114 CE) was a master in this. He gives the algorithms
and gives proofs of them in his Siddhantasiromani (1150 CE) with his own commentary. In this
article, we have given some examples of his treatment of problems involving spherical variables.

prime vérti ca
(samamandala)

Fig. 13. The five variables: zenith distance (z), declination (¢), latitude (¢), azimuth (a), and the
hour angle (H) of a celestial object.

There was a significant advance of spherical trigonometry by the Kerala school, especially in
Tantrasangraha of Nilakantha Somayaji (1500 CE)[E], and the commentary on it, namely, Yuktib-
hasa of Jyesthadeva (1530 CE) [§]. In these texts, the problems involving spherical variables are
systematised. Here, many derivations are based on manipulations on the spherical surface and
not necessarily in the interior of the sphere as in Bhaskara’s methods described in this article.
This is true for the solutions of the “Ten problems” (dasaprasnah). Consider the five variables:
zenith distance (z), declination (4), latitude (¢), (Indian) azimuth (a), and the hour angle (H), as
shown in Fig. 13. The ten problems refer to the methods for obtaining any two of them, given the
other three. The solutions are all exact. There are also new results like the exact expression for
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the declination of a planet with latitude, for instance, or an exact expression for the inclination of
Moon’s orbit with the equator at any instant, involving the longitude of the ascending node of the
Moon. Karanapaddhati of Putumana Somayaji (around 1550 CE) [4] carries forward the tradition
further.

10.

11.

12.
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4. What is Happening in the Mathematical World?
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4.1 Two LONG STANDING PROBLEMS IN REPRESENTATION THEORY HAVE BEEN
SOLVED

"™ Two mathematical breakthroughs have been achieved by Pham Tiep, a profes-

1 sorat Rutgers University, which could significantly advance the understanding
of symmetries in nature and the behavior of various random processes. These
findings could revolutionize our understanding of symmetries and random pro-
cesses in fields such as physics, computer science, and even economics.
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Tiep’s first breakthroughs was solving ‘The Zero Height Conjecture’ proposed
in 1955 by the renowned mathematician Richard Brauer.

The Conjecture is as follows: Let G be a finite group and p a prime. The set Irr(G) of irreducible
complex characters can be partitioned into Brauer p-blocks. Each p-block B is canonically asso-
ciated to a conjugacy class of p-subgroups, called the defect groups of B. The set of irreducible
characters belonging to B is denoted by Irr(B).

Let v be the discrete valuation defined on the integers by v(mp>) = where m is coprime to p.
Brauer proved that if B is a block with defect group D then v(x(1) > v([G : D]) for each x €
Irr(B). Brauer’s Height Zero Conjecture asserts v(x(1)) = v(]G : D]) that for all x € Irr(B)
if and only if D is abelian (See [2], [4]).

Tiep’s solution unveils a hidden rule of symmetry that could transform how scientists model com-
plex systems - from molecular structures to quantum mechanics. Understanding group structures
plays a critical role in computer algorithms, data encryption, and even material science.

Tiep’s work on the Height Zero Conjecture was a joint effort with several international colleagues,
including Gunter Malle from Germany, Gabriel Navarro from Spain, and Amanda Schaeffer Fry,
a former student now at the University of Denver. Proof of the conjecture was published in the
September issue of the Annals of Mathematics.

Tiep’s second major contribution is a solution of a difficult problem in what is known as the Deligne-
Lusztig theory, part of the foundational machinery of representation theory. Tiep and coauthors
have obtained bounds on traces, which confirm the long standing anticipations of experts in the
field. The work is detailed in two papers, one was published in Inventiones mathematicae, vol. 235
(2024), the second in Annals of Mathematics, vol. 200 (2024). Tiep’s discovery introduces a new
method to solve matrix-related problems, potentially revolutionizing the way mathematicians and
scientists analyze large-scale systems.

For the second breakthrough, Tiep worked with Robert Guralnick of the University of Southern
California and Michael Larsen of Indiana University. On the first of two papers that tackle the
mathematical problems on traces and solve them, Tiep worked with Guralnick and Larsen. Tiep
and Larsen are co-authors of the second paper.

Tiep’s solutions to long-standing problems in group theory and matrix analysis could influence
everything from developing next-generation Al models to improving the efficiency of telecommu-
nication networks.
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4.2 A BROADER VERSION OF HILBERT’S FAMOUS 10" PROBLEM HAS BEEN
PROVED

In 1900, the eminent mathematician David Hilbert Introduced a list of 23 key problems which
were to guide the next century of mathematical research. The problems aimed at building a firm
foundation from which all mathematical truths could be derived. A key part of this vision was
that mathematics should be “complete”. That is, all its statements should be provably true or
false.

In the 1930s, Kurt Gddel demonstrated that this is impossible: In any mathematical system, there
are statements that can be neither proved nor disproved. A few years later, Alan Turing and others
built on his work, showing that mathematics is riddled with “undecidable” statements - statements
whose validity cannot be confirmed or negated by any computer algorithm.

Hilbert’s 10** problem concerns Diophantine equations - polynomial equations saught to be solved
in integers. For millennia, mathematicians searched for integer solutions to them.

Hilbert’s 10" problem asked whether it is always possible to tell if a given Diophantine equation
has integer solutions. Does an algorithm exist to determine this for every equation?

In 1970, a Russian mathematician Yuri Matiyasevich showed that there is no general algorithm
that can determine whether given Diophantine equation has integer solutions - that Hilbert’s 10t"
problem is an undecidable problem. You might be able to come up with an algorithm that can
assess most equations, but it won’t work for every single one.

Mathematicians wanted to test the reach of Matiyasevich’s conclusion. The equations in question
always have solutions over complex numbers, so if one of them is unsolvable for integers, then
the question arises as to where the cut-off arises when you pass to larger systems of numbers. In
the 50 years since Hilbert’s 10" problem was resolved, mathematicians have been searching for
this cutoff.

Now, (from left to right) Peter Koymans, a mathematician at
Utrecht University and his longtime collaborator, Carlo Pagano
of Concordia University in Montreal - as well as another team
of researchers working independently - have taken a major step
toward that goal. Both groups have proved that for a vast and
important collection of settings beyond integers, there is likewise
no general algorithm to determine if any given Diophantine equation has a solution.

The new proofs focused on a natural extension of Hilbert’s 10*" problem. The extension deals
with Diophantine equations whose solutions belong to number systems which can be obtained by
starting with a finite set of numbers (like {1,—1, \/i}) and adding those numbers in different
combinations, called rings of integers. Mathematicians suspected that, for every single ring of
integers the problem is still undecidable.

In general, undecidability proofs follow the same recipe: They show that the problem of interest is
equivalent to a famous undecidable problem in computer science called the halting problem. The
halting problem asks whether an idealized computational device called a Turing machine, when
fed a given input, will run forever or eventually halt. It’s known that there’s no algorithm that
can answer this for every Turing machine.

To settle Hilbert’s original 10*" problem, mathematicians built on the work that began with Julia
Robinson and others around 1950, and culminated in Matiyasevich’s 1970 result, in which it was
shown that for every Turing machine there is a corresponding Diophantine equation. The useful
correspondence between Turing machines and Diophantine equations falls apart when the equations
are allowed to have non-integer solutions.

A way to resolve the issue was found by Sasha Shlapentokh, and others. They decided to change
the Diophantine equation by adding few terms so that solutions to original equation in a new ring
of integers is equivalent to an integer solution to the revised equation and thereby re-establishing
correspondence with Turing machines. They also figured out what terms they had to add to the
Diophantine equations for various kinds of rings, could be determined using a special equation
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representing an elliptic curve. However, building such an elliptic curve that worked for every ring
of integers was an extremely subtle and difficult task.

In summer 2024, Koymans and Pagano could build an elliptic curve which gave them the recipe
they needed to add terms to their Diophantine equations, which then enabled them to encode
Turing machines - and the halting problem - in those equations, regardless of what number system
they used. Thus, they proved that Hilbert’s 10*” problem is undecidable for every ring of integers.
The result was solidified further in February, 2025, less than two months after Koymans and Pagano
posted their paper online, an independent team of four mathematicians announced a new proof of
the same result. Instead of looking for a special elliptic curve, they had relied on a different kind
of equation to do the same job.

Source: https://www.wired.com/story/new-proofs-expand-the-limits-of-what-cannot-be-known/

4.3 MATHEMATICIAN DANIEL MATHEWS SOLVE 380-YEAR-OLD PROBLEM
INSPIRED BY DESCARTES

nally been solved by Associate Professor Daniel Mathews, a mathematician at
Monash University School of Mathematics, shedding new light on an equation
first written by philosopher and mathematician René Descartes.

The discovery extends the famous Descartes Circle Theorem stated in 1643,
which describes the relationship between four mutually tangent circles. The
theorem describes a quadratic equation in the radii of the circles such
that when it is satisfied, one can construct a fourth circle tangent to three given, mutu-
ally tangent circles. Despite centuries of mathematical progress, a general equation for larger
configurations of circles remained elusive - until now. Daniel Mathews found the equation
that governs these larger patterns of tangent circles, known as “n-flowers”.

For n > 3, an n-flower consists of a central circle C'__,
and n petal circles C; , over integers j mod n, so that
the C; are externally tangent to C', in order around C,
and each C}; is externally tangent to C;_; and C} ;. (See
Figure 1). The curvature of a circle C, is denoted by
k,. Descartes’ theorem gives an equation satisfied by the
curvatures in a 3-flower:

g A long-standing geometric mystery dating back to the 17t century has fi-

Figure 1: Left, a 3-flower. Right, a 5-fower.

(koo + Ky + ko + kg)? = 2(k2 + kT + k3 + K3).
Generalised Descartes Theorem, proved by Daniel Mathews is as follows: Let a n-flower consist of
a central circle C,, and n petal circles C;(j € Z/nZ).

Define my,, andmj forl1<j<n-—1 asmozﬁ/:o+1,mj:\/<:j+1> (’Zj’l +1>.

Then for odd n, the following holds:

2 .
% (I (my — i) =T (my +0)) =05 (m3, 1) =0,

For even n, the following holds: % (H?;ll (m;—1)— - (m;+1i)) — HEZIIW (mgj +1) =0.

The proof, which draws on modern mathematical techniques involving spinors - objects that also
play a role in quantum mechanics and relativity — solves a problem that has remained open for
more than 380 years [3]. Mathews used a version of spinors developed by Nobel prize-winner Roger
Penrose and Wolfgang Rindler, which they applied to the theory of relativity.

Others have generalised the result in other ways, but this is the first extension of the result to give
an explicit equation relating the radii of an arbitrary number of circles in the plane.

This discovery is an exciting example of how classical problems can inspire new mathematics
centuries later.
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Sources:

1. https://www.monash.edu/science/news-events/news/2025 /mathematicians-solve-380-year-
old- problem-inspired-by-descartes

2. https://en.wikipedia.org/wiki/Descartes %27 theorem

3. https://www.danielmathews.info /wp-content /uploads/2023/10/spinors__and__descartes
__theorem.pdf

4.4 A MAJOR GROUP THEORY PROBLEM, ‘MCKAY CONJECTURE’ HAS BEEN
SETTLED

In 2003 Britta Spdth, a German graduate student, encountered a
McKay conjecture, one of the big open problems in group theory
and decided to dedicate all her time to working on it. She, now a
Professor at the University of Wuppertal in Germany, has finally
succeeded, together with her partner, Marc Cabanes, a mathemati-
cian now at the Institute of Mathematics of Jussieu in Paris.

The problem that absorbed them takes a key theme in mathematics
and turns it into a concrete tool for group theorists. The McKay conjecture, named after the
Canadian mathematician John McKay, who originally stated a limited version of it as a conjecture
in 1971, for the special case of prime p = 2 and simple groups. The conjecture was later generalized
by other mathematicians to a more general conjecture for any prime p and more general groups.
The conjecture states that: Suppose p is a prime number, G is a finite group, and P is a Sylow
p-subgroup of G. Then the irreducible complex characters of G are in one-one correspondence
with the irreducible complex characters of the normalizer of P.

After the conjecture was posed, several mathematicians tried their hand at proving it. They made
partial progress - and in the process they learned a great deal about groups. But a full proof
seemed out of reach.

The McKay conjecture for the prime 2 was proven by Gunter Malle and Britta Spéth in 2016 [2].
A proof of the McKay conjecture for all primes and all finite groups was announced by Britta
Spéath and Marc Cabanes in October 2023 in various conferences, a manuscript on it was put out
later in 2024 [3].

Sources:

1. https://www.quantamagazine.orqg/after-20-years-math-couple-solves-major-group-theory-
problem- 20250219/

2. Malle, Gunter; Spdth, Britta (2016). “Characters of odd degree”. Annals of Mathematics.
184: 869- 908. doi:10.4007/annals.2016.184.3.6

3. Marc Cabanes; Britta Spdth (2024). “The McKay Conjecture on character degrees”. arXiv:24-
10.20392 [RT].

4.5 THE KAKEYA CONJECTURE HAS BEEN SOLVED FOR DIMENSION THREE

Chinese mathematician Wang Hong has solved a geometry problem called the Kakeya conjecture
in three dimensions. It is considered a breakthrough that could have implications for imaging,
data processing, cryptography and wireless communication.

The conjecture goes back to 1917, when Japanese mathematician Soichi Kakeya posed a problem:
If you place an infinitely thin needle onto a surface and rotate it to point in every single direction,
what is the smallest area the needle can cover?

In 1928, Besicovitch proved that one could in fact rotate a needle in arbitrary small amounts of
area.This led to the definition of a Kakeya set in 232 to be a set which contained a unit line segment
in every direction. Besicovitch’s construction showed that Kakeya sets in 982 could have arbitrarily
small measure; in fact, one can construct Kakeya sets which have Lebesgue measure zero. The
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same question of how small these Kakeya sets could be was then posed in higher dimensions, giving
rise to Kakeya set conjecture: A Kakeya set in 32 has Hausdorff and Minkowski dimension n.
The Kakeya conjecture was solved for n = 2 by Davies in 1971, but remained open for n > 3. The
updates on the conjecture were discussed in section 3.2 of Issue 2 of TMCB Vol. 5 in October 2023.
In 1999, Nets Katz and Terence Tao showed that any counterexample to the conjecture must be
“plany”, which means that whenever line segments intersect at a point, those segments also lie
nearly in the same plane. It must also be “grainy”, which requires that the planes of nearby points
of intersection be similarly oriented. However, they couldn’t prove that all counterexamples must
be sticky, which would complete the proof of the conjecture. In a “sticky” set, line segments that
point in nearly the same direction also have to be located close to each other in space which in
turn force a lot of overlap among the line segments, thereby making the set as small as possible-
precisely what you need to create a counterexample.

\ In October 2022, Wang Hong, an associate professor at the New
York University Courant Institute of Mathematical Sciences (left)
and her collaborator Joshua Zahl, from The University of British
Columbia (right), proved that there are no sticky counter exam-
ples, with a Minkowski dimension of less than 3, to the Kakeya
conjecture [2].

Now, Wang and Zahl have claimed to have proved that, in three
dimensions, a Kakeya set does indeed have Hausdorff dimension 3 and Minkowski dimension 3.
They presented their milestone proof in a 127-page preprint paper on the open-access repository
arXiv on Feb. 24, 2025 [3] which is considered to be a significant progress in geometric measure
theory.

Sources:

1. hitps://www.scmp.com/news/china/science/article /3300958 /chinese-maths-star-wang-hong-
solves-infamous-geometry-problem

2. |“Sticky Kakeya sets and the sticky Kakeya conjecture” (Submitted on 18 Oct 2022), arXiv.
2210.09581 [math.CA].

3. Hong Wang; Joshua Zahl (2025-02-24). “Volume estimates for unions of convexr sets, and
the Kakeya set conjecture in three dimensions”. arXiv:2502.17655 [math.CA].

4.6 SCIENTISTS REDISCOVER LOST WORKS OF APOLLONIUS IN A
17t CENTURY MANUSCRIPT

Researchers have found two lost books by Apollo-

R I};‘_ ﬁgﬂd&};& . nius, the ancient Greek mathematician known as the
2 g mﬁxﬁmﬂgﬁ Great Geometer. The works were found in an Ara-
18 el ondgede . . . . .
e %z:ﬁm% bic manuscript preserved at the Libraries of Leiden
A g e . .. .
R S N »ﬂwﬁm ==  University in the Netherlands. The manuscript had
% i o b 3 e fitemssmmsssete  been forgotten in the library, part of a collection ac-

quired by Dutch mathematicianJacob Golius in the
17" century.

The rediscovered manuscript contains the lost fifth
and seventh books of Apollonius’s renowned work,
the Conics. It introduces fundamental geometric
concepts such as hyperbolas, ellipses, and parabolas. These concepts had an impact on the scien-
tific world and are noted for their influence on the ancient mathematics.

Only four of the original eight books of the Conics were available to Furopean scholars during the
Renaissance, as the fifth to eighth books were considered lost for centuries. The rediscovery of the
lost books reflects the Islamic Golden Age’s contributions to preserving knowledge. Islamic scholars
preserved and expanded ancient knowledge, which later contributed to the European Renaissance.

n 2960


https://www.scmp.com/news/china/science/article/3300958/chinese-maths-star-wang-hong- solves-infamous-geometry-problem
https://www.scmp.com/news/china/science/article/3300958/chinese-maths-star-wang-hong- solves-infamous-geometry-problem
"Sticky Kakeya sets and the sticky Kakeya conjecture" (Submitted on 18 Oct 2022), arXiv:2210.09581 [math.CA]
"Sticky Kakeya sets and the sticky Kakeya conjecture" (Submitted on 18 Oct 2022), arXiv:2210.09581 [math.CA]
Hong Wang; Joshua Zahl (2025-02-24). "Volume estimates for unions of convex sets, and the Kakeya set conjecture in three dimensions". arXiv:2502.17655 [math.CA]
Hong Wang; Joshua Zahl (2025-02-24). "Volume estimates for unions of convex sets, and the Kakeya set conjecture in three dimensions". arXiv:2502.17655 [math.CA]

TMC Bulletin, April 2025

The manuscript is a translation of books five to seven by Thabit ibn Qurra, edited by the Banu
Musa brothers. It is accompanied by illustrations and Arabic calligraphy, illuminating the history
of mathematics. These manuscripts not only contain mathematical knowledge but also attract
attention with calligraphy and geometric illustrations.

Apollonius of Perga, born around 260 BCE in the ancient Greek city of Perga, is known for his
pioneering work in geometry. He studied and taught in Alexandria and was one of the greatest
mathematicians and geometers of antiquity. Of the 21 works on mathematics, geometry, astronomy,
and mechanics that Apollonius wrote, only four have survived.

Source: https://www.jpost.com/archaeology/archaeology-around-the-world/article-84 1280

4.7 AWARDS
4.7.1 Angkana Riiland receives Leibniz Prize for her Qutstanding Research

University of Bonn mathematician Angkana Riiland receives the Gottfried Wil-
helm Leibniz Prize from the German Research Foundation (DFG) which is en-
dowed with 2.5 million euros, in recognition of her excellent research work. The
researcher from the Hausdorff Center for Mathematics (HCM) at the University
of Bonn is honored with the award for her outstanding work in mathematical
analysis, particularly on models for microstructures in phase transitions in
solids and inverse problems with non-local operators.

In her research on microstructures, she is particularly interested in a class of
alloys that have shape- memory properties.

Her work on inverse problems, is about reconstructing information from indirect measurements -
such as is done with X-ray tomography or ultrasound scans, for instance. “This indirect information
lets you infer information on someone’s body without having to take any tissue samples”, Angkana
Riiland explains.

Riiland was born in 1987 in Chiang Mai, and was a mathematics student at the University of Bonn.
She completed her doctorate in 2014 with the dissertation On Some Rigidity Properties in PDEs
supervised by Herbert Koch. In 2014, she was awarded the “Hausdorff Memorial Prize” for the
best doctoral thesis in mathematics.

After postdoctoral research at the University of Oxford, working there with John M. Ball, she
became a researcher at the Max Planck Institute for Mathematics in the Sciences in 2017. She
took a professorship at Heidelberg University in 2020 before returning to the University of Bonn
in 2023.

The highly endowed Leibniz prize allows great freedom in research. Riiland, who is also a member
of the Transdisciplinary Research Area “Modeling” at the University of Bonn, would like to use
the prize money to further expand her research group at the HCM.

Sources:

1. hittps://www.uni-bonn.de/en/news/240-202/
2. https://www.mathematics.uni-bonn.de/en/news/leibniz-prize-awarded-to-angkana-ruland
3. https://en.wikipedia.org/wiki/Angkana_ R%C3%BCland

4.7.2 Three Distinguished Mathematicians Receive The 2025 Leroy P. Steele Prizes

The Leroy P. Steele Prizes are awarded every year by the American Mathematical Society, for
distinguished research work and writing in the field of mathematics. Since 1993, there has been a
formal division into three categories. The Steele Prize for Lifetime Achievement is awarded for the
cumulative influence of the total mathematical work of the recipient, high level of research over a
period of time, particular influence on the development of a field, and influence on mathematics
through Ph.D. students. The Leroy P. Steele Prize for Mathematical Exposition is awarded annu-
ally for a book or substantial survey or expository research paper. The Steele Prize for Seminal
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Contribution to Research is awarded for a paper, whether recent or not, that has proved to be of
fundamental or lasting importance in its field, or a model of important research.

2025 Leroy P. Steele Prize for Lifetime Achievement:

English mathematician Dusa McDuff received the 2025 Leroy P. Steele Prize for
Lifetime Achievement from the American Mathematical Society for her outstand-
ing contributions in C*-algebras, symplectic geometry and topology, as well as
her leadership and mentoring in mathematics.

The prize is awarded for foundational and far-reaching contributions and long-
continued leadership and mentoring in mathematics. Specializing in the structures
and properties of space, she analyzes the interactions between pairs of quantities
by measuring two-dimensional areas.

She was the first recipient of the Ruth Lyttle Satter Prize in Mathematics, was a Noether Lecturer,
and is a Fellow of the Royal Society. She is currently the Helen Lyttle Kimmel ‘42 Professor of
Mathematics at Barnard College, New York.

2025 Leroy P. Steele Prize for Mathematical Exposition:

New Zealand mathematician working in arithmetic geometry - James S. Milne
has been awarded 2025 Leroy P. Steele Prize for Mathematical Exposition for his
“extensive corpus of excellent expository works” provided on his website.

The website, which Milne has been developing since 1996, now contains over 2,000
pages of notes, as well as other expository articles, covering a wide range of topics
within algebra and number theory, from basic group theory to class field theory
to abelian varieties to Shimura varieties to Tannakian categories and much more.
Many of the documents began as course notes but have been expanded and polished over decades to
become some of the most thorough and well-written accounts available of the topics they cover. The
inclusion of ample historical remarks and guides to the literature adds value for both newcomers
and experts. The expository works have educated a generation of arithmetic geometers and will
continue to do so for as long as they are available.

Milne is Professor Emeritus of Mathematics at the University of Michigan.

2025 Leroy P. Steele Prize for Seminal Contribution to Research:

Professor Kenneth Alan Ribet will receive the 2025 AMS Leroy P. Steele Prize for
Seminal Contribution to Research for his groundbreaking 1976 paper “A modular
construction of unramified p-extensions of Q(p,,)".

Kenneth Ribet is an American mathematician working in algebraic number theory
and algebraic geometry. He is known for the Herbrand-Ribet theorem and Ribet’s
theorem, which were key ingredients in the proof of Fermat’s Last Theorem, as
well as for his service as President of the American Mathematical Society from

\\f'

2017 to 2019.

Ribet is credited with paving the way towards Andrew Wiles’s proof of Fermat’s Last Theorem.
In 1986, Ribet proved that the epsilon conjecture formulated by Jean-Pierre Serre was true, and
thereby proved that Fermat’s Last Theorem would follow from the Taniyama-Shimura conjecture.
He is currently a professor of mathematics at the University of California, Berkeley.

Sources:

1. https://www.ams.org/news?news__id="7402
2. https://en.wikipedia.orqg/wiki/Dusa_ McDuff
3. https://en.wikipedia.org/wiki/Ken__ Ribet
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5. A Peep into History of Mathematics

S. G. Dani
UM-DAE CEBS, University of Mumbai, Vidyanagari Campus, Santacruz (E), Mumbai 400098
Email: shrigodani@cbs.ac.in

Here are my picks for a peep into history for this issue.

5.1 Dipak Jadhav Object-numerals as listed in Nijaguna Sivayogl’s Viveka-Cintamani, Indian
Journal of History of Science 58 (2023), no. 1, 13-19.

Though the decimal place-value system, together with zero, for representing natural numbers
has been around at least since mid-first millennium CE, numbers were seldom written, until the
recent centuries, using symbols for the digits as we do today, whether in literary or in scientific
works. The reason was that the works were composed in poetic forms, and it would be highly cum-
bersome, perhaps also incongruous, to fit expressions for numbers into metrical patterns. Instead,
digits, or segments of them, in the desired number were substituted by words that would convey
them; thus, for example, vedarandhrarasaksi would stand for 2694, with veda for 4, randhra for 9,
rasa for 6 and aksi for 2, (in reverse order). The system is known as bhutasankhya, object numerals
or word numerals in English. Several different words could be adopted for the same digit, thus
giving considerable flexibility for usage in a poetic format.

There have been some notable compilations of the object-numerals (the words used to substitute
for the digits), including by H. R. Kapadia and more recently by K. S. Shukla, containing 449 and
945 entries respectively. The present paper discusses a list of 59 object numerals from the work
Viveka-Cintamani of Nijaguna Sivayogl. The latter was a philosopher who very likely flourished
in the 15" century. The work describes in particular, in Kannada but with many Sanskrit terms,
philosophies from many Vedic, Buddhist, Jain and materialist works - the book was translated into
Marathi in 1604 and into Sanskrit in 1652. The focus of the paper is on the object numerals listed
in the work. Comparisons of entries are made with those from the earlier compilations mentioned
above. The paper also provides a good introduction to the topic of object numerals, including
some of the history.

5.2 Adrian Rice, An enchantress of number? Reassessing the mathematical reputation of Ada
Lovelace, Notices of the American Mathematical Society, Vol. 71 (2024), no. 3, pp. 374-385.

Ada Lovelace (1815-1852), one of the earliest celebrated women mathematicians from the mod-
ern times, is renowned for her 1843-paper containing a theoretical account of the analytical engine
designed by Charles Babbage, which is an important milestone in the development of computers;
incidentally, she was the daughter of the renowned poet Lord Byron, but was raised by her mother,
as the parents got divorced. The last appendix in the 66-page long paper, mentioned as her “chief
claim to fame” contains some thoughts on the possibility of artificial intelligence, and an outline
of an iterative process by which Babbage’s machine could compute the Bernoulli numbers.

In the subsequent period however, in parallel with the appreciation of her work, there have been
misgivings in some quarters, casting doubts on her ability to make such a technical contribution.
In this context the present article takes up a reassessment of her mathematical ability, analyzing
what mathematical topics she would have been exposed to in the ten year period until the 1843
paper, the changing perspectives on her over a period, and the arguments involved in the negative
assessments concerned. The author notes that research on this, based on study of archival material,
in collaboration with Christopher Hollings and Ursula Martin, has led to two papers and a book,
and that it provides “strong evidence that she did indeed have the mathematical competence to
write and understand the mathematics contained in her famous paper of 1843”.
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6. Problem Corner

Udayan Prajapati
Mathematics Department, St. Xavier’s College, Ahmedabad
Email: udayan.prajapatiQgmail.com

In the January 2025 issue of TMC Bulletin, we posed two problems, one from Geometry and one
from Number Theory. So far, we have received a solution of problem from Geometry from Anmol
Mishra form Valsad, Gujarat. However, we have not received any solution for the other problem.

The solution provided by Anmol is correct but lengthy and hence we present here, solution provided
by problem proposer, Priyamvad Srivastav.

We would like to emphasize here that problem solving is an important activity in the process of
learning mathematics. Hence, we appeal to all the teachers to encourage their students to attempt
solving problems posed in this section.

In this issue, we pose two problems one from Number Theory by Dr. Vinaykumar Acharya and
one form Combinatorics by Dr. Udayan Prajapati for our readers. Readers are invited to email
their solutions to Dr. Udayan Prajapati (ganit.spardha@gmail.com), Coordinator, Problem Corner
before 10" June, 2025. Most innovative solution will be published in the subsequent issue of the
Bulletin.

The first Problem posed in the last issue:

Let ABC be an actute angled triangle inscribed in a circle of radius R. Suppose P lies in the
interior of the triangle such that PB # PC,/BPC = 2/BAC and PA? + PB x PC = 2R2. If
is the incenter of the triangle PBC, show that ZQBA = ZQCA.

Solution: (by the Problem proposer Priyamvad Srivastav)

Let O be the circumcenter of triangle ABC and denote the circum-
circle by I'. Then OA = OB = OC = R.

Moreover, since Z/BPC = 2/BAC = 2/A, it follows that
B, P,O,C are concyclic.
Now, let CP meets I' again in D. Then £ZBDC = ZA and
/PBD = /BPC—/BDC =2/A— /A = /PDB, from which it
follows that PB = PD.

“\_/" Therefore, PB x PC = PD x PC = |OP% — R?| = R? — OP? (the

power of the point P with respect to I').

Now, we have 2R? = PA? + PB x PC = PA? + R?> — OP?, and therefore PA? = R?> + OP? =
OA? + OP?, which implies that ZAOP = 90°.

Now, in cyclic quadrilateral BPOC, we have, /BCP = ZBOP, and therefore, 2/C = ZAOB =
ZAOP + ZBOP = 90° + /BCP.

And hence ZBCP = 2/C —900. This immediately implies that ZCBP = 2/B — 90o.
So, ZPBA =ZABC — ZCBP = ZB — (24B —900) =900 —ZB.

Similarly, ZPCA =90°— £C.

Now, since (Q is the incenter of APBC, we have

2/B — 90°
/QBA= /QBP+ /PBA = f% +90° — /B = 45°. Similarly,

2/C — 90
/QCA=/QCP + /PCA = % 90— /C = 45,

n 3360



Problems for this issue

Problem 1 (proposed by Vinay Acharya): Let a and b be distinct positive integers such that
3% + 2 is divisible by 3? 4+ 2. Prove that a > b.

Problem 2 (proposed by Udayan Prajapati): Consider n x n grids having n? vertices (i, j)
for all 4,57 = 1,2,...,n. Find the number of pairs of unit squares having vertices from the
n? vertices such that the square regions have empty intersection (having no common edges
or corners).
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7. International Calendar of Mathematics Events

Ramesh Kasilingam
Department of Mathematics, II'TM, Chennai
Email: rameshk@iitm.ac.in

Note: Majority of events in July and August were included in the January Issue of TMCB. Here
we include only those events of July and August which were announced later.

July 2025

July 21-25, 2025, Formalizing Class Field Theory, Mathematical Institute, University of
Oxford, UK. lwww.claymath.org events formalz'zing-class-ﬁeld-theory/f

July 28-30, 2025, SIAM Conference on Computational Geometric Design (GD25), Montreal
Convention Center, Montreal, Quebec, Canada.

Iwww.sz’am.orq conferences/cm/conference qd2£|

August 2025

August 10-12, 2025, The Mathematics of Various Entertaining Subjects Conference (MOVES
2025), NYU Courant, New York City, NY. }momath.org moves—conference/f

August 23-24, 2025, 2025 Fall Western Sectional Meeting, University of Denver, Denver, CO.
www.ams.org/meetings/sectional /2326 __program.html

August 29-31, 2025, 25th International Pure Mathematics Conference 2025 (Silver Jubilee
IPMC 2025), Islamabad, Pakistan. www.pmc.orq.pk

September 2025

September 1-4, 2025, Twelfth Conference on New Trends in the Applications of Differen-
tial Equations In Sciences (NTADES 2025), St. Constantin And Elena, Varna, Bulgaria.
www.ntades. el

September 1-6, 2025, XV Annual International Conference of the Georgian Mathematical
Union Batumi Shota Rustaveli State University, Batumi, Georgia. Igmu.qtu.qe conferences/f

September 2-4, 2025, 12" International Congress on Fundamental and Applied Sciences 2025
(ICFAS2025), Fatih Sultan Mehmet Vakif University, Istanbul, Tiirkiye.
icfas2025.intsa.org/index. htmi

September 3-6, 2025, XII International Scientific Conference “Modern Problems of Math-
ematics and Mechanics” The Institute of Mathematics and Mechanics of The Ministry of
Science and Education of The Republic of Azerbaijan, Baku/Azerbaijan. }mpmm.z’mm.az/f
September 3-7, 2025, 9" International Conference of Mathematical Sciences (ICMS 2025)
Maltepe University Maltepe, Istanbul, Turkey. Iwww.maltepe.edu.tr icm:{
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e September 4-6, 2025, International Conference on Mathematics and Mathematics Education
(ICMME2025), Istanbul Medeniyet University, Aceskudar, Istanbul, Turkey.

e September 8-10, 2025, Advancing The Frontiers - International Conference on Algebra, Anal-
ysis, and Applications, Kutaisi International University, Georgia. }www.kiu.edu. ge ?m:55’6}

o September 8-12, 2025, The 12" International Conference on Stochastic Analysis and Its
Applications, University POLITEHNICA Bucharest, Bucharest, Romania.
lsz'tes.google.com view/icsaal025 acoel

¢ September 29 - October 1, 2025, Conference on New Innovations in Material Science Frank-
furt, Germany. lmomentem.org conferences material—scz’ence/f

o September 29 - October 3, 2025, AIM Workshop: Multiscale Modeling of Ocular and Car-
diovascular Systems, American Institute of Mathematics, Pasadena, California.
laimath.org workshops/upcoming ocularcardiO/f

October 2025

e October 3-5, 2025, 2025 Fall Southeastern Sectional Meeting Tulane University, New Orleans,
LA. www.ams.org/meetings/sectional /2328 _program.html

e October 13-17, 2025, AIM Workshop: Flag Algebras and Extremal Combinatorics, American
Institute of Mathematics, Pasadena, California.
laz'math.org workshops /upcoming ﬂagemtremal/f

e October 14-17, 2025, SIAM Conference on Mathematical and Computational Issues in The
Geosciences (GS25), Louisiana State University, Baton Rouge, Louisiana, U.S.
lwww.siam.org conferences-events/siam-conferences/gs25

o October 15-16, 2025, The 1°* International Electronic Conference on Games (IECGA 2025)
Online With Live Sessions.

Lsciforum.net event IECGA2025?utm_source:AMS@utm_medium:AMScal

e October 18-19, 2025, 2025 Fall Central Sectional Meeting St. Louis University, St. Louis,
MO. www.ams.org/meetings/sectional /2322 __program.htmi

o October 19-23, 2025, 7*"* School on Belief Functions and Their Applications Granada, Spain.
lwww.bfasociety.org BFTAQOQ:’)’/{

e October 20-24, 2025, New Trends of Stochastic Nonlinear Systems: Well-Posedeness, Dy-
namics and Numerics, CIRM, 163 Avenue De Luminy, Case 916 13288 Marseille Cedex 9,
France. conferences.cirm-math.fr/3374.htmi

¢ October 27-31, 2025, AIM Workshop: Computations in Stable Homotopy Theory American
Institute of Mathematics, Pasadena, California.
laz'math.org workshops /upcoming compstabhom/f

November 2025

e November 17-21, 2025, Recent Trends in Stochastic Partial Differential Equations, SL Math,
17 Gauss Way, Berkeley CA. }u)ww.slmath.org workshops/1 143

o November 17-20, 2025, STAM Conference on Analysis of Partial Differential Equations (PD25),
Sheraton Pittsburgh Hotel at Station Square Pittsburgh, Pennsylvania, U.S.
lwww.siam.org conferences-events/siam-conferences/pd25
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India at
European Girl’'s Mathematical Olympiad (EGMO) 2025
In Pristina, Kosovo (11-17, April, 2025)

Indian Contestants

Silver Medalists

A

Sanjana Chacko Shreya Mundhada

Bronze Medalists

b

Saee Patil Shreya Gupta Ray

Rank | Name PL | P2 | P3| P4 | P5 | P6 | Total Medal
28 Sanjana Chacko 7 4 1 7 7 0 26 Silver
42 Shreya Shantanu Mundhada 7 7 0 7 2 0 23 Silver
74 Saee Patil 4 2 1 7 4 0 18 Bronze
74 Shreya Gupta Ray 7 0 0 7 4 0 18 Bronze

National Result
12 India (4 contestants) 25 | 13| 2 |28 (17 | O 85 2S+ 2B

We congratulate all the contestants for their excellent performance.




Kurt Gédel (28 April 1906 - 14 Jan. 1978)

Austrian-American logician, mathematician & philosopher. Had an immense
effect upon scientific and philosophical thinking in the 20th century. Known for
two Gddel incompleteness theorems. Developed a technique now known as

Godel numbering, which codes formal expressions as natural numbers. Also
made important contributions to proof theory.

Edsger Wybe Dijkstra (11 May 1930 - 06 May 2002)

A Dutch computer scientist, physicist, mathematician. Contributed to diverse
areas of computing science, including compiler construction, operating systems,
distributed systems, sequential and concurrent programming, software
engineering principles, graph algorithms. Coined the phrase "structured
programming"”. Known for Dijkstra’s shortest path Algorithm.

Alonzo Church (14 June 1903 - 11 Aug. 1995)

An American mathematician and logician who made major contributions to
mathematical logic and the foundations of theoretical computer science. Best
known for the lambda calculus, Church—Turing thesis, proving the undecidability

of the Entscheidungs problem, Frege-Church ontology, and the Church-Rosser
theorem. Also worked on philosophy of language.
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