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From the Editors’ Desk

K. R. Parthasarathy, an internationally renowned doyen of mathematics from India, who has
inspired generations of mathematicians, and in particular pioneered the area Quantum Stochastic
Calculus, passed away on June 14, 2023. A tribute was paid in The Mathematical Consortium
Bulletin (TMCB) on the occasion, in its July 2023 issue, with an article contributed by one of us
(KBS), who has had the privilege of being a long-time colleague and collaborator of his. At that
time it was also decided to bring out a special issue of TMCB in his memory, introducing to the
readership the highlights of his contributions to mathematics and the mathematical community.

Parthasarathy (known also as Partha in the west and KRP in India) began his research career
around 1960 and continued to be active almost till the end. During his career he made profound
and lasting contributions on various topics including classical probability theory, Lie algebras and
representations, probability distributions on Lie groups, central limit theorems and continuous
tensor products, Mackey’s theory of imprimitivity, perturbation theory, quantum stochastic cal-
culus and quantum probability theory. He had a long string of students and a large number of
collaborators across several countries, who all admired him as a teacher, mentor, or a mathemati-
cian sharing generously his ideas in attaining deeper understanding of mathematical issues and
concepts they engaged in. There have also been others, including one of us (SGD) who have been
involved in pursuing topics in which KRP left his mark, sometimes in a short span. This prompted
the idea of inviting various experts associated with him in one or other way to contribute expo-
sitions on suitable topics that engaged KRP and were pursued by them. And it worked! The
invitees, without exception, agreed to be enlisted for the endeavour; we may further add that they
duly delivered their contributions well in time, so that we could have them processed for timely
publication of the special issue as was conceived, without causing delay or warranting any last
minute changes. And here is the result, which we are pleased to present to the readers.

In presenting the contributions we have tried to organize them, by and large, in the order in
which the research-canvas of KRP evolved over time, chronologically; as should be clear, there are
limitations to adopting such a principle, on account of the interrelations in the material discussed
by various experts, and the complex connections that would have been at play when the research
progressed in the first place.

The first article, by R. L. Karandikar and B. V. Rao, tells us about KRP’s early years as a
researcher, commencing the narrative with his first day in the Indian Statistical Institute, Kolkata.
After recalling two problems discussed in his thesis, the article goes on to underline the deep influ-
ence of Kolmogorov’s consistency theorem on KRP and his close learning/research collaboration
with the other three of the “famous four” (V. S. Varadarajan, K. Ranga Rao and S. R. S. Varad-
han). The article also discusses his work on the Lévy-Khinchine representations in the framework
of locally compact groups, and its impact on the subsequent developments.

The second article by Apoorva Khare is centred on the “PRV conjecture” in KRP’s paper
with Ranga Rao and Varadarajan in Annals of Mathematics (1967). Following the pioneering
study by Harish-Chandra of certain irreducible representations of Lie groups over Banach spaces
the authors, restricting themselves to complex Lie groups, achieved a better understanding of
the modules, proving existence of “minimal types”, now called PRV components. The article
concludes with a discussion of factorisable representations of current groups, another area that
interested KRP, on which more will be said in this issue by Klaus Schmidt.

Following his earlier study on Lévy-Khinchine representations for locally compact abelian
groups, KRP initiated study of infinitely divisible distributions in the wider framework of not
necessarily locally compact second countable groups, and especially Lie groups, raising the ques-
tion of their embeddability in one-parameter convolution semigroups. In Article 3, S. G. Dani,
who has pursued the topic further, recalls the ideas introduced by KRP on the theme and their
impact on later work.

The study of infinitely divisible distributions together with certain results of Araki-Woods and
Streater, inspired KRP, in the mid-1970s, to look for an analogue of Lévy-Khinchine formula for
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limits of products of uniformly infinitesimal arrays of positive definite functions over general locally
compact second countable groups. In Article 4, Klaus Schmidt, who collaborated with KRP on
the theme, recounts the story of the developments, bringing out in particular its connection with
factorisable representations.

Article 5 by Gadadhar Misra is, in a sense, on the dividing line of KRP’s research-choreography
between its “Classical” and “Quantum” phases. After preparing the reader with notions of pro-
jective unitary/anti-unitary representations and Wigner’s theorem in the backdrop, the article
discusses in detail KRP’s generalization of Mackey’s imprimitivity theorem; while Mackey’s theo-
rem concerns only projective unitary representations, the generalisation applies also to projective
anti-unitary representations, and the article highlights the essential difficulties involved in the
generalization.

KRP is best known in the wider world for the creation of Quantum Stochastic Calculus (QSC),
jointly with Robin Hudson. Article 6 by Luigi Accardi presents a vivid personalized account of
its emergence at the hands of Hudson and KRP, to which the author was initially a keen witness,
until subsequently becoming a participant. The thought processes that evolved in the course of its
development unfold step by step in the article. The deep influence of Kolmogorov on KRP, and
that of KRP on the author are found interwoven in the narrative.

Kalyan Sinha has the distinction of being the living mathematician with the largest number
of joint research papers with KRP, through a sustained collaboration lasting over two decades; it
may not be out of place to mention here that Robin Hudson, the joint creator of QSC mentioned
earlier with whom KRP had the largest number of joint papers, passed away in 2021 - else he
would surely have been one of the contributors to this issue. In article 7, Sinha gives a glimpse of
the phases and highlights of the mathematical developments through their intensive collaboration,
acknowledging along the way the deep mathematical influence KRP had on him.

Article 8 is by B. V. Rajarama Bhat, one of KRP’s illustrious former Ph.D. students. He
writes about KRP’s work on the post- Quantum Stochastic Calculus period, beginning with the
construction of weak Quantum Markov processes. Contents of a few of KRP’s articles on extreme
points of stochastic maps on C*- algebras and extremal Quantum decision rules are also discussed,
ending with KRP’s later interest in Quantum computation.

In a short essay written in 2010, KRP illustrated the notion of a quantum Gaussian state
as a natural generalization of the Gaussian distribution in classical probability theory. Various
problems he proposed there, calling for further research, were to occupy him in the subsequent
years. He contributed many papers on these questions, on the broad theme of generalized finite
mode Quantum Gaussian States and their symmetries; some of these are collaborative works, but
many are with him as the sole author, including his last paper published as recently as 2022; in
a sense this was his last major topic of his research. In article 9 Franco Fagnola discusses the
contents of these papers and the broad perspective underlying them.

Apart from the mathematical fare, we also present to the reader, reminiscences of S. R. S.
Varadhan and Rajendra Bhatia - two names that are closely associated with KRP -, an introduc-
tion to KRP’s long journey through mathematics, and many glimpses of the remarkable persona
through photographic images.

We thank the Editorial Board of TMCB for presenting us this opportunity of bringing out this
special issue in memory of KRP, which we trust will go a long way in providing a comprehensive in-
troduction to his contributions to mathematics and to the mathematical community, especially the
younger generation. We thank all the contributors and the referees for their time and efforts. We
thank Mrs. Shyamala Parthasarathy and family for generously sharing with us many photographs
and biographical details of KRP. We also thank Professors Vijay Pathak and S. A. Katre for their
help in editing the issue, the designers Mrs. Prajkta Holkar and Dr.R.D. Holkar, and all those
who have directly or indirectly helped us in the timely production of this special issue dedicated
to Professor K. R. Parthasarathy.

Editors-in-charge
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Rajeeva L. Karandikar and B. V. Rao
Chennai Mathematical Institute, H1 Sipcot I'T Park, Siruseri, TN 603103, India
Email: rlk@Qcmi.ac.in, bvrao@cmi.ac.in

In 1956 a young man from Madras (now, Chennai) reaches ISI, Calcutta (now, Kolkata) to
continue his studies. He was late by a day to join the course. When he attended the first class,
there was an ordinary looking man lecturing and conducting practical session. When asked if
he brought practical note book, the young man replied that he did not know and would get it
later. The teacher was stern and told him that even if he is late, he should have found out before
attending the class. The young man who did not like the stern warning, went to complain to the
director C. R. Rao. But on entering the office, he quickly turned back. That ordinary looking
teacher was C. R. Rao and the young man was K. R. Parthasarathy (KRP).

KRP contributed significantly, and established himself as a leading player in several areas. The
present article covers some of his contributions in the beginning years of his career.

After completing the three-year advanced statistician’s training course, he approached C. R.
Rao (CRR) for a problem to work on. CRR advised him ‘learn information theory’. This advice of
CRR turned out to be prophetic; not only was KRP’s thesis topic information theory, on problems
he asked himself after reading Khinchine’s book; he returned to information theory in his last
years, but now to Quantum information Theory.

Here are two of the problems discussed in his thesis. Consider a finite set A and the two

sided infinite product space Al = X A, where each A; = A. This is a compact metric space
—0o0

when each coordinate is equipped with discrete topology. Points in this space are denoted by
x = (z, : —00 <n < 00). The coordinate random variables are denoted by (X, : —00 < n < 00)
and thus X,,(z) = z,, for x € A. The shift transformation on the space is denoted by T'. Thus if
r = (z,,), then T(x) = y where y,, = x,,_; . Let u be a probability on A! which is invariant under
T (stationary channel). For each n-tuple (z,,...,x,), we denote pu({x,...,z,)) = p(X;, = z;;1 <
i <n). Define

K(p) =— lim — Z u((a:l,...,xn>)logu(<x1,...,xn>),
(1))
where the sum is over all n-tuples of the alphabet A. For a stationary p (channel) this limit exists
and is known as rate per letter of the source.

KRP proved, among other things, that there is a function h on A’ such that K(u) = [ hdp
for any stationary u. The analysis depends on the Kryloff-Bogoliouboff theory as explained by
Oxtoby [@} Here is the essential starting point of this latter theory. Let T" be a homeomorphism
of a compact metric space Q. Firstly, using the Birkhoff Ergodic theorem and the fact that C'(f2)
is separable, we can see the following: Given any ergodic (for T') probability p, there is at least
one p € 2 such that ergodic averages of all f in C'(€2) converge. Secondly, the Riesz representation
theorem now allows you to read ergodic measure p through such points p € €. Finally one knows
that any invariant measure is a mixture of ergodic measures. These allow one to get such a function
h.

In a subsequent paper he shows, among other things, the following. Consider the bilateral

product 7o>§o M, of a complete separable metric space M = M, (for all i) along with the shift

transformation 7T'. Then the set 91, of all ergodic measures is a dense G5 in the space of probabilities
under weak topology. Further the set of periodic measures is dense in the set of ergodic measures.
Such an evaluation of the size of sets is along the lines of earlier results of Halmos on the size of
weakly mixing transformations and of Rokhlin on the set of strongly mixing transformations and of
Kakutani on the size of the Quasiregular points (points at which the ergodic averages converge for
each continuous function). Oxtoby who had earlier given an exposition of the Kryloff-Bogulioboff
theory appreciated this result of KRP and showed later that the results hold in general separable
Borel spaces.

V. S. Varadarajan felt that Kolmogorov consistency theorem is very fundamental and one
should be able to derive many results using this theorem. He himself used it to prove the Riesz

n 16



TMC Bulletin, April 2024

Representation theorem for positive linear functionals on C'(X) for locally compact Hausdorff space
X [L§]. The idea is the following. For finite product of two point set {0, 1} it is hand calculation;
for uncountable product X of two point space, Kolmogorov consistency theorem does the job.
Then using that a compact Hausdorff space is continuous image of a closed subset of such an X
one deduces the result; finally for locally compact Hausdorff spaces one argues locally on each
open set with compact closure and pieces the measures defined on these compact sets together.
KRP, collaborating with Bingham proved the Bochner theorem on positive definite functions on
the dual of a locally compact abelian group — via Kolmogorov consistency Theorem [] Again
the first step is to prove it for T, a finite product of unit circle by hand calculation and then
use Kolmogorov consistency theorem for uncountable products of T'. Finally the general result is
deduced from this by an interesting argument. In a subsequent paper, KRP uses this probabilistic
technique to prove, among other things, Pontryagin duality theorem for locally compact abelian
groups.

Suppose we have a process X, for 0 < ¢t < 1 which is relatively stationary in the following
sense: If n > 1 and (¢y,...,t,) and (¢, +h,...,t, + h) are all in [0,1] then (X, ,..,X, ) and
(Xy,4ny Xy 4p) have the same distribution. Question: Can we extend this as a stationary
process to all of the real line? In other words can we find a stationary process (Y, : ¢t € R) such
that (Y;,0 <t < 1) and (X,,0 <t < 1) have the same distribution? KRP, collaborating with
Varadhan, showed in [9] that the answer is affirmative when the given process is real valued and
is continuous in probability. They first prove a Hahn-Banach type theorem on extension of a
positive linear functional which is invariant under action by the group of rationals. Interestingly
enough as a consequence they obtain, using Gaussian processes, the following theorem of M. G.
Krein: A continuous positive definite function given on [—1, 1] can be extended as a continuous
positive definite function on all of R. This problem of extending stationary processes was taken up
nearly thirty years later by Kamm in her thesis (see [4]) in the context of Hausdorff space valued
process. However the basic questions whether the extension is unique, whether there is an Ergodic
extension, or whether similar result holds for random fields etc. appear unanswered.

From the deep study, by KRP, Ranga Rao and Varadhan, of probability measures on locally
compact second countable abelian groups [8], especially the Lévy-Khinchine Representation, it
follows that an infinitely divisible distribution can be embedded in a convolution semigroup. KRP
takes up this embedding problems for not necessarily abelian groups in [Eh and [@] and frees the
problem from the existence of Lévy-Khinchine representation. For instance he proves that this can
be done after a shift, on a compact second countable group if the measure has no idempotent factors.
This problem, of embedding an infinitely divisible probability in a one parameter semigroup of
probabilities, was later taken up by several authors including S. G. Dani and M. McCrudden.

In an appendix to the book of Kolmogorov and Gnedenko [H], Doob makes an interesting state-
ment. Since the limit distributions for sums of independent random variables are usually discussed
through convolutions of characteristic functions, it is possible to develop a theory, not mentioning
the word random variable, but restricting to positive definite functions. KRP, collaborating with
K. Schmidt took this up in a wider context of tensor products of Hilbert spaces and discussed
limits of products of uniformly infinitesimal families of positive definite kernels.

The work on Locally Compact Abelian groups, jointly with Ranga Rao and Varadhan is a
seminal contribution. There were some studies earlier on extending the study of probability distri-
butions and weak convergence on structures beyond the reals. In [é] the authors provide definitive
extensions, for LCA groups, of (i) Lévy-Khinchine Representation theorem for infinitely divisible
distributions, (ii) criteria for weak convergence of i.d.laws and (iii) Khinchine’s theorem on sums
of infinitesimal summands.

The book Probability Measures on Metric Spaces [@], published in 1967 is an ever green and
lasting contribution for both researchers and students. This book has over 4500 citations on Google
Scholar, unusual for a research level book in mathematics that is not a text book. While visiting
Sheffield, KRP gave a course for PhD students and wrote notes on the subject. Eugene Lukacs,
visiting the department, saw the notes and apparently said, “I am the editor of a series run by
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Academic Press, can I have these notes for publication”.

The book is based on work of the group of four- V. S. Varadarajan, Ranga Rao, Varadhan and
KRP. The four had met when they were working towards their PhD at Indian Statistical Institute,
Kolkata, and were there for some time subsequently. Though the book is called Probability Mea-
sures on Metric Spaces, it has lot of material going beyond metric spaces. Perhaps the name was
suggested after the contents were written.

In the 1950s, going beyond Euclidean spaces, the focus on measures was on locally compact
topological spaces. It was clear that from probability theory point of view, when dealing with
stochastic processes, one had to go beyond locally compact spaces, as even C10,1] is not locally
compact, while Wiener had constructed a measure on this space (later called the Wiener measure).

Doob, Donsker and others had started working on ways to extend approximation theorems
such as Central limit theorem to i.i.d. observations from a stochastic process, which required
them to deal with C[0,1] and DJ[0, 1] - the space of right continuous functions having left limits.
The Russian school of probability had started working on convergence in distribution for random
variables taking values in a metric space.

Varadarajan had worked on convergence in distribution of stochastic processes, presumably
unaware of Prohorov’s work published few years earlier in Russian. Varadarajan’s work appears
with details in KRP’s book, for C[0, 1] and also for D[0, 1] valued stochastic processes. Around
the same time as publication of this book (1967), Billingsley’s book Convergence of Probability
Measures @] was also published. While Billingsley’s focus in the book was weak convergence of
measures, KRP’s book connects weak convergence to topological aspects of the set of measures on
a metric spaces.

As Dudley says in his review [@} of KRP’s book this was written at just the right time when
the subject matter reached the appropriate degree of maturity; carefully and cogently done. As
Tom Liggett points out in his review [[L§], much of the material presented is made available here
for the first time in book form.
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2. KRP’s Contributions in Lie Theory

Apoorva Khare
Department of Mathematics, Indian Institute of Science;
Analysis and Probability Research Group; Bangalore 560012.
Email: khare@iisc.ac.in

In Lie theory, perhaps the most well-known contribution of K. R. Parthasarathy (henceforth
termed “KRP”) is the paper [11] with Ranga Rao and Varadarajan, following their announcement
[@] The initial part of this paper was worked out also with S.R.S. Varadhan (see [] for an
account of the development of this work); the paper has subsequently often been referred to as the
“PRV paper”.

The PRV paper arose out of the grand program of Harish-Chandra on the representation the-
ory of real connected semisimple Lie groups. Let G be such a group and K a maximal compact
subgroup. Harish-Chandra [@, | pioneered the study of certain irreducible Banach-space represen-
tations of G that are “K-finite”, i.e., direct sums of finite-dimensional K-modules. In a historical
sense, this program follows other landmark works on representations of groups: the Peter—Weyl
theorem on (unitary) representations of compact groups; Weyl’s connecting compact and complex
Lie groups; and the work of Gelfand and Naimark, to name a few.

2.1 MOTIVATION; MINIMAL TYPE

In Harish-Chandra’s aforementioned program lies his famous subquotient theorem, which connects
every irreducible Banach-space G-representation V' that is “admissible” (i.e., when restricted to the
action of K, the multiplicity of every K-module is finite), to the principal series representations.
Following these works for real Lie groups, KRP et al. revisited the situation with G' a (connected,
simply-connected, semisimple) complex Lie group. To discuss their motivation, first let g denote
the complex Lie algebra of G, let Ug denote its universal enveloping algebra, and define

g:=gxg D g:={(X,X):Xeg} (2.1)

It was known thanks to Harish-Chandra that the irreducible V as above — which are moreover
equipped with a character of the center Z(Ug) — are essentially the same as irreducible modules in
the category €(g,9) (defined below). The goal of KRP et al. was to study these latter modules, and
hence obtain a better understanding of the former G-modules V. The strategy that the authors
adopted was to use “minimal types”.

Definition 1. Given a complexr semisimple Lie algebra g, a Cartan _subalgebra by, and a fized
choice of simple roots 11 = {a; : i € I}, define b and b similar to (@), and let P* denote the
set of dominant integral weights (inside the weight lattice P) — these parametrize the irreducible
finite-dimensional representations of g = @, with Vﬁ()\) denoting the g-module corresponding to
A € PT. (The corresponding module over g will simply be denoted by V(X\); these and other basics
of semisimple Lie algebras can be found e.g. in /@]) We will denote the h-weights of Vﬁ()\) by
wtV5(A).

Next, define C(g,9) to be the full subcategory of g-modules V' that can be decomposed as direct
sums of finite-dimensional (irreducible) g-modules Vg()\), each with at most finite multiplicity —
denoted [V : Vg(A)].

Given a simple object V in C(§,8) (an irreducible “Harish-Chandra module”), a weight A\ € P*
is said to be a minimal type of V if the multiplicity [V : Vz(A\)] > 0, and

[V :Va(w)] >0, pe PT = e wtV(p).

Note that if V' has a minimal type A, then X is unique. Now in the PRV-paper, the authors
construct a family {7, , : A € b*,v € P} of simple modules in €(g,§) with minimal types, and
obtain a better understanding of them through their minimal types. It is also clear that for
A\, € Pt the g-module V(\) ® V(u) is a simple object in €(§,g). Thus, the first question is
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whether V/(A\) ® V(1) has a minimal type. (For g = sl,, in which case A\, € Z, consideration
of the Clebsch-Gordan coefficients shows that the minimal type is |[A — u|.) The authors showed
that the minimal type always exists (now termed the PRV component following their paper):

Theorem 1. Let W be the Weyl group of G and w, denote the longest element of W, and \, u € P*.
The minimal type of V(A) & V(u) is A+ w,pu, where U for an integral weight v € P is the unique
W -translate of v which is dominant (i.e., P NWv = {v}).

2.2 TENSOR PRODUCT MULTIPLICITIES AND THE (K)PRV CONJECTURE

Another famous result in the PRV-paper along these lines also concerns the module V(\) ® V().
The study of the minimal type involves decomposing this module over g; in other words, we are
considering the Littlewood—Richardson coefficients

m5 = V)@ V(p) : V()]

e

Aw, p

Ay =1. More generally, KRP et al. showed:

From Theorem Iﬂ we know that m

Theorem 2. Given weights p,v € P and a weight v € b*, define

V(v v) = {v e Vip), s e/ " o =0 vie T},

where V ()., is the y-weight space for ad(h) and e; a Chevalley generator. Then,
my , = dim V(v — A\ N) = dim VT (5 A+ w,p, —w,p), VA p,v € PT.

This result provides an exact formula for the tensor product multiplicity, and does not involve
cancellations — this follows other formulas by Steinberg and by Brauer (which involve cancellations),
as well as work of Kostant, among others. Both the theorems above have been widely used and
generalized in the literature; the reader is referred to the survey [@] for a detailed overview of the
PRV-paper, its past inspirations, contemporary works, and future applications.

Here is a second widely-explored follow-up involving tensor product multiplicities. As men-
tioned above, V(\) ® V(u) always has a minimal type A+ w, - u. It is not hard to see that there
is also always a “maximal type” — the weight A+ = A+ 1 — and both of these weights (i.e.,
the corresponding simple finite-dimensional modules) have multiplicity 1 in V/(\) ® V(u). Thus, a
natural question would be if the same holds when w,, 1 are replaced by an arbitrary element of W;
it was conjectured that this holds, and it was called the PRV conjecture.

This conjecture was significantly strengthened by Kostant, and is now called the KPRV con-
jecture. It was settled by Kumar EE] and by Mathieu [@] (with later proofs by Polo, Rajeswari,
Littelmann, and Lusztig, among others), asserting that for any \,u € P™ and w € W, the mod-
ule V(A +wp) occurs with multiplicity 1 in the Ug-submodule of V(\) @ V(i) generated by the
one-dimensional (A, wp)-weight space V(A)\ @ V(i) y,-

A final digression, for completeness, is that KRP et al. introduce a set of matrices K;L of
size d, x d,,, where d, = dimV(u),, such that if d, > 0, then detKj, (now called the PRV
determinant) splits into a product of linear factors, which are related to the Shapovalov form and
to the annihilators of Verma modules. These PRV determinants have also been much studied in the
subsequent literature; one notable application mentioned here is in (re)proving Duflo’s remarkable
result that the annihilator in Ug of any Verma module — which is a left-ideal in Ug — is generated
by the annihilator in Z(Ug). This was done by Joseph, with Letzter, over quantum groups and also
classically over semisimple Lie algebras, and later by Gorelik for strongly typical Verma modules
over basic classical Lie superalgebras. The PRV determinants are central in these proofs.
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2.3 IRREDUCIBLE ADMISSIBLE REPRESENTATIONS AND THEIR MINIMAL TYPES

Returning to the original motivation, for each & € h* and integral weight v € P, Harish-Chandra
had constructed G-representations mg , C L*(K, fiyg,,,; C), with irreducible admissible G-modules
corresponding to subquotients of ¢ ,. Now let p denote the half-sum of the positive roots, and

)‘:)\E,V = %<€+V)_p

In [], the authors constructed G-subquotients of 7, ,, which they denoted by 7, ,. They then
obtained detailed information about these modules — the following points are collected together
from [6], and are either contained in [[L1] or can be deduced from it.

Theorem 3. Fiz § € h* and an integral weight v € P, and let A = A, as above.

1. @y, is an irreducible subquotient of Harish-Chandra’s module 7, C L*(K, piygaar; ©), s0 it
too is defined on a Hilbert space. Moreover, m¢ , is irreducible if and only if 7y , = 7, if

and only if [7y , + V5(p)] = dim Vi (p),, for all p € P*.

2. Ty, is an object of C(g,8), with minimal type component v € PTNWwv. Moreover, [T, , :

V(@) =1.

3. my, has the same infinitesimal character as m,. This character is x(\,v — X —2p), where

X(A\, X') is the central character of Z(Ug) = Z(Ug) ® Z(Ug) corresponding to the g-Verma
module M(X, \') = M (\) @ My(\').

4. The modules 7, ,, include the finite-dimensional irreducible modules: V(X)) @ V(1) == T\ 31 0
for all \,p € PT.

5. Moreover, if e denotes the twisted W-action (we X\ = w(A+p) —p) then T , = Tyex wy fOT
all w € W, while 7, and 7y, ,, are not equivalent if v/ ¢ Wv. If v = v = 0, then the
converse to the first assertion is also true: If ' ¢ W e X\, then Ty o % 7y o-

The final point to be made here is a partial resolution of the “isoclasses question”, which has
been resolved by now. Thus, we know that every simple object in €(g,g) is isomorphic to some
.- Moreover, given (A, v), (X, V') € h* x P, the converse to the above result of KRP et al. holds:

T =Ty, <= JweW:(\,V)=(welwy).

2.4 FACTORISABLE REPRESENTATIONS OF CURRENT GROUPS

While the primary goal of this section was to elaborate in an informal way on the contents of
the PRV paper, let us add another area in which KRP had a sustained interest: current groups
and their factorisable representations. These notions were introduced by Araki (together with
Woods) [m, ] in the 1960s in the context of quantum field theory, to help understand the current
commutation relations. In [], KRP and Schmidt proved some fundamental results towards
understanding factorisable multiplier representations, in addition to working via measure theory,
as opposed to the techniques of Araki and Woods (so they provide novel technology as well).
Given a locally compact second countable group G, a standard Borel space (T, 0(T)), an Araki
multiplier S : o(T) x G x G — R, and an Araki S-function ¢ : o(T x G — C, the authors show

the existence of a direct integral Hilbert space H = fTEB H, du(t) with respect to a totally finite
measure g on o(7T), together with a continuous unitary representation of G in H, a projection-
valued measure on o(7"), and an H-valued function ¢ on G satisfying certain technical conditions.
The converse also holds. Once this measure and associated items are shown to exist, the authors
then show — for G as above and moreover connected — that factorisable multiplier representations
of the weak current group F(T,G) are intimately linked to an “Araki pair” (S, ¢). This helps
them obtain a complete description (for connected locally compact second countable topological
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groups () of the factorisable multiplier representations W of the weak current group F (T,G). In
particular, the authors show how to construct W from the direct integral Hilbert space mentioned
above; this also yields the Araki-Woods imbedding theorem.

The study of multipliers and of factorisable representations engaged the attention of KRP and
his collaborators for several years. The work [@] is KRP’s expository survey about multipliers,
covering results by Bargmann, Mackey, Varadarajan, and Simms. With Schmidt in [@], KRP also
provided a novel method to construct factorisable representations over R™ when G is a connected
simply-connected Lie group.

Acknowledgements: The author acknowledges support from Swarna Jayanti Fellowship grants
SB/SJF/2019-20/14 and DST/SJF/MS/2019/3 from SERB and DST (Govt. of India), and the
DST FIST program 2021 [TPN-700661].
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Consider a locally compact second countable topological group G. By a distribution on G
we mean a probability measure on G defined on the g-algebra of Borel subsets of G. We denote
by P(G) the class of distributions on G, and consider it equipped with the weak* topology. On
P(G) there is also a multiplication arising as convolution product of distributions, making P(G)
a topological semigroup. The (convolution) product of any p,v € P(G) will be denoted by pv
and correspondingly for n € IN the nth (convolution) power of any A will be denoted A™". By a
continuous one-parameter semigroup {u,} in P(G) we mean a family of u,’s, ¢ > 0, such that
popty = ey for all s,¢ € R, such that ¢ > p, is continuous.

Given a p € P(G) it is of interest to know whether it lies in a continuous one-parameter
semigroup, namely whether there exists a continuous one-parameter convolution semigroup {p;}
in P(G) such that puy; = p; when this holds we say that p is embeddable. When p represents the
transition probability of a random walk on G, embeddability corresponds to the question whether
there is a continuous time stochastic process on G, of which the walk is the unit-time specializa-
tion. One reason for the interest is that continuous one-parameter semigroups of distributions are
amenable to what can be broadly termed “methods of calculus”. These one-parameter semigroups
admit what is called the Lévy-Khinchine representation, which help understanding them; extend-
ing the classical studies, such a theory was developed by G. A. Hunt, in a paper in 1956, for the
case of (connected) Lie groups; it was extended to the general case of locally compact groups later,
by Hazod and Siebert, in 1973; see [@}, p. 331.

It is easy to see that a necessary condition for embeddability of a distribution w is that it must
admit convolution roots of all orders; p with this property is said to be infinitely divisible. For
various classes of distributions of interest such a property be derived by other means. The question
then is which infinitely divisible distributions are embeddable.

In the classical framework for distributions on the group of real numbers such a question was
considered in a somewhat different form. The distributions were considered equivalent if they were
translates of each other, focusing on their centered versions in a way; such a formulation arose
from the context of the distributions which had barycenters, which it was considered appropriate
to suppress. Thus a distribution g was considered infinitely divisible if for all n there exists a
distribution whose n-th power is a translate of p and embeddable if a translate of u lies in a
one-parameter convolution semigroup. Embeddability of infinitely divisible distributions in this
sense was established by P. Lévy, in 1954. A generalization of the result for locally compact abelian

roups was proved in one of KRP’s early papers, jointly with R. Ranga Rao and S. R. S. Varadhan
f@], in 1963, in a similar formulation of the concepts, with the distributions considered equivalent
if they are translates of each other; note that the group being abelian the left and right translates
of a distributions are the same.

The version of the embedding problem not involving equivalence upto translations, as formu-
lated above, was introduced by KRP in his 1967 paper [H] The modification in the formulation
has been important in furthering the study on the general theme; in [@] (see p.245) Herbert Heyer
refers to it as “a more generalizable approach to the theorem...proposed by Parthasarathy”.

KRP motivated this question in [E] by recalling Hunt’s representation theorem mentioned
above, on the one hand, and embeddability results proved in the older formulation, on the other
hand; the latter included his result with Ranga Rao and Varadhan as in [@] and also a result
proved independently R. A.Gangolli and V.N. Tutubalin (in 1964 and 1962 respectively), which
is an analogue of the embeddability assertion for distributions for symmetric spaces, in place of
groups. He emphasizes exploring a direct interrelationship, confirming embeddability within the
framework of probability theory on groups, rather than via harmonic analysis which had been the
fulcrum of earlier work. In his words, “The method adopted in these papers is to obtain a formula
for the “Fourier transform” and then deduce the imbeddability. However, Hunt [4] has obtained
directly the representation of one-parameter convolution semigroups in any connected Lie group.
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The question naturally arises whether one can directly imbed an infinitely divisible distribution in
a one-parameter convolution semigroup and deduce the Lévy-Khinchine representation theorem.”

Apart from introducing the problem which has been a source of much further activity, KRP led
the way, in the paper, by introducing certain techniques towards its resolution, which have played a
crucial role in the subsequent developments. In the paper he proved the embedding theorem (in the
new formulation) for R, with the method extending also to R™ for n > 2, and compact connected
(not necessarily abelian) Lie groups, giving expression to the techniques. We shall discuss below
some details of the ideas introduced and their impact in a wider context. Before doing so it would
be convenient to note certain points to put the matter in perspective.

We note that there are some exceptions to embeddability being implied by infinite divisibility,
in the renewed formulation. Consider the group G = Q, of rational numbers equipped with the
discrete topology, and a point-mass distribution p = J,, where x € Q. Then it is infinitely divisible
since d,,,, is a convolution root of order n, for all n € IN. However it is easy to see that it can
not be embeddable, unless x = 0. A similar phenomenon arises in the case of p-adic numbers. A
conjecture emerged in the aftermath of KRP’s above mentioned paper that if GG is a connected Lie
group then every infinitely divisible distribution on G is embeddable.

The 1967-paper is from his Manchester years. Though on returning to India in the 1970s he
largely moved on to other areas, he did revisit the embedding problem, and contributed the papers
[B] and [@], and the latter especially was to have major influence on further progress.

In a major development on the question, it was proved by M. McCrudden in 1981 that if G is a
connected Lie group and p is an infinitely divisible distribution with the further property that its
support is not contained in a proper closed subgroup of G then p is embeddable. The review of the
paper in Mathematical Reviews is by KRP. In it he attests it saying “This settles a long-standing
problem of probability theory on Lie groups.” and adds, with an evident sense of satisfaction, “As
the author points out the method used is a modification of the argument employed by the reviewer.”
Indeed the reference here is to his paper [@]

McCrudden, incidentally, worked at the University of Manchester. He did not actually overlap
with KRP there, but got introduced to the problem and the area, on account of a student there,
Quentin Burrell, to whom KRP had suggested the problem. His first work on the problem was with
Burrell, extending KRP’s result for connected nilpotent Lie groups. Though KRP evidently did not
think of the condition on the supports of the distributions as being a serious restriction, McCrudden
was passionate about eliminating it. In 1985 McCrudden and I were both at a conference at
Oberwolfach, Germany, where he introduced me to the problem. That was to lead to a long
collaboration between us, leading to proof of the embedding theorem for all infinitely divisible
distributions for a large class of connected Lie groups, though not all. T shall not go into the
details here; the reader is referred to [2] for an exposition on the theme, including also some of my
later work with Yves Guivarc’h and Riddhi Shah, and the current status on the question.

While a good deal of technicalities and new ideas have gone into further developments there
has always been a core part of the strategy which can be traced back to KRP’s 1967 paper. It may
be briefly described as follows. Let p be an infinitely divisible distribution. To get an embedding
{p;} one aims at identifying candidates for p,., r any rational number, which would give a “rational
embedding” and ensuring that it would extend to a continuous embedding with real parameter.
For r = %, P, ¢ natural numbers, the candidate would have to be of the form Al where A/ is a gth
root of y. When g is infinitely divisible one gets an abundant supply of gth roots; if m = k¢ and
A, is an mth root then A is a gth root; (they may not be distinct, but one does not need to
worry about it). For any r = % the set say P, of possible A\'s that can be produced in this way is
a closed set. It turns out that if it is actually compact then, taking limits suitably, one can arrive
at rational embeddings, which can then be seen to extend to continuous embeddings; when the
P.’s are not compact the endeavour is to find suitable compact subsets of them to which also the
strategy can be applied.

A strategy to arrive at compactness of P.s as above was introduced by KRP in [% via an
interesting property of convolution products of distributions proved in [@]y (see also [B] for an
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exposition); this property has in fact been useful in a variety of other contexts as well (see @] in
particular): Let G be a locally compact second countable group. Let {,,} and {7, } be sequences
of distributions such that {¢,,n, } is relatively compact. Then there exists a sequence {g,,} in G
such that the sequences {£,,9,,} and {g,'n,,} are relatively compact. If {¢, } is a sequence in P, as
above with r < 1 then we readily get a sequence {7, } in P,_, such that £,n, = . The theorem
therefore implies that {¢,,g,,} is relatively compact for a sequence {g,,} in G. In the case of R (and
R™) with some further arguments KRP was able to prove that sequence {g,, } is relatively compact,
proving in this case that P, is compact.

Numerous variations of the theorem and strategies are involved in various subsequent works.
The legacy lives on.

10.

11.

12.
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4.1 INTRODUCTION

After reading K. R. Parthasarathy’s (KRP’s) monograph Probability measures on metric spaces
[H] in 1968, I decided to apply for a post-doc position at Manchester University to work with him.
When I eventually arrived there in 1969 KRP’s interests had begun to focus on some intriguing
connections between central limit theorems in classical probability theory and analogous limit
theorems for unitary representations of locally compact groups. The fact that he was starting
on a new mathematical venture, combined with his extraordinary willingness to share problems
and ideas, allowed me to begin working with him on these problems almost immediately after my
arrival.

One of the important problems in classical probability theory is to determine which probability
distributions on the real line arise as weak limits of sums of uniformly infinitesimal independent
random variables. By using the correspondence between probability measures and positive definite
functions on IR this problem becomes equivalent to finding all continuous positive definite functions
which occur as limits of uniformly infinitesimal arrays of positive definite functions (explained
below). All such limits can be described by the Lévy-Khinchine formula (cf. e.g., [H]) In 1963,
KRP, Ranga Rao and Varadhan proved a version of the Lévy-Khinchine formula for limits of
uniformly infinitesimal arrays of positive definite functions on locally compact second countable

abelian groups (cf. [@], Theorem 7.1 or [], Corollary IV.7.1).

A few years later R. Streater [@], motivated by papers by Araki and Woods ([ﬂ], []), showed
that analogous limits of products of uniformly infinitesimal arrays of positive definite functions on
more general groups can be used to construct so-called factorisable representations of certain cur-
rent groups, leading to interesting mathematical models of quantum fields. KRP was immediately
captivated by the problem of finding an analogue of the Lévy-Khinchine formula for such limits
on general locally compact second countable groups.

On the following pages I will attempt to give a brief account of what progress we made on this

problem in [[13]. T hasten to emphasize that the lion’s share of this progress should be credited to
my former friend and collaborator KRP.

KRP at Warwick, England - relaxing moments.
(Photos courtesy of Prof. Klaus Schmidt)
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LIMIT THEOREMS FOR POSITIVE DEFINITE FUNCTIONS ON GROUPS

Let G be a Polish (i.e. complete, separable, metric) group with identity element 1., H a complex,
separable Hilbert space with inner product (-,-) and norm | - ||, and let V': g = V, be a (weakly)
continuous, unitary, cyclic representation of G on H with a cyclic unit vector v. If we set

¢(9) = (Vyv, ) (4.1)

for every g € G, then the function ¢: G — C is continuous and positive definite, i.e.

2
m _ 4 _ m
Zi,jzl ¢i¢i®(9; 9i) = Hzizl c"VQUH 20

for every m > 1 and every choice of g4, ..., ¢,,in Gand ¢y, ..., c,, in C. Furthermore, ¢ is normalized
in the sense that ¢(15) = 1.
Conversely, if ¢: G — C is a continuous normalized positive definite function, then there exists
a continuous unitary representation V' of G on a complex separable Hilbert space /A with a cyclic
unit vector v satisfying (4.1)) for every g € G (cf. e.g. [@] Construction 2.B.4 or [B] Theorem 1.2).
If (V,v) and (V’,v") are two continuous, unitary, cyclic representations of G on Hilbert spaces
JC, H', respectively, and if

P(g) = <vavvv>7 ¢'(g9) = <Vg,vlavl>v

for every g € G, then the tensor product representation V@V’ on H ® H’, restricted to the cyclic
subspace of H ® H’ generated by v ® v’, satisfies that

(V@ V) (@), (v ') = ¢(9)¢'(9), (4.2)

for every g € G. This shows that the pointwise product ¢¢’ of two continuous, positive definite
functions is again positive definite and arises from the tensor product of the representations arising
from ¢ and ¢’.

/A\ssurne now that the group G is locally compact, second countable, and abelian. We denote
by G = Hom(G,S) the dual or character group of G, consisting of all continuous homomorphisms
from G into the group S = {z € C | |z| = 1}. Under the topology of uniform Conve@ence on

J, or [§]

compact sets G is again a locally compact and second countable abelian group (cf. |
Chapter IV).

For every v € G and g € G, we write (g,v) € S for the value at g € G of the character v € G.
Bochner’s Theorem allows one to find, for every continuous positive definite function ¢: G — C,
a unique Borel probability measure p4 on G such that

P(g) = /6 (9, 7)dpg(y) (4.3)

for every g € G. Conversely, if u is a Borel probability measure on C/T’\, then the function ji: G — C
defined by

i(g) = /A (9,7)du(v) (4.4)

G
is continuous, positive definite, and normalized. One can reconcile the equations ([1]) and (@)
by setting # = L?(G, tiy), and by considering the unitary representation V' of G on J{ given by

(Vo) = (g, f()

for every f € H, g€ G and v € G. The constant function v =1 € K is cyclic for V', and

(Vyv,0) = /@ (9,7) dpg(x) = ¢(9)
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for every g € G.
If p, i’ are two Borel probability measures on G, the product of the positive definite functions
i, i’ in (@) satisfies that

Ap = (4.5)

where p* p” is the convolution of y and p’, i.e. the probability measure on G with
[rawsnr = | [ food)dutodu (v
€ G Ja

for every bounded Borel function f: G—C.

INFINITELY DIVISIBLE PROBABILITY MEASURES

A probability measure p on G is infinitely divisible if there exists, for every n > 1, a probability
measure v, on G with y = v;" = v, *---xv,. If yon G is infinitely divisible, then @) - (@) imply
that j1 is a continuous infinitely divisible positive definite function, i.e. that there exists, for every
n > 1, a continuous normalized positive definite function ¢,, with i = ¢;r. The infinitely divisible
continuous normalized positive definite functions on G are thus in one-to-one correspondence with
the infinitely divisible Borel probability measures on G.

For G = R, the celebrated Lévy-Khinchine formula states that a continuous, positive definite
function ¢: R — C is infinitely divisible if and only if

log ¢(t) = it3 — # + /(exp ite —1— {1) 1;52 dv(z) (4.6)
R
for some 8 € R, 02 > 0, and some finite Borel measure v on R with v({0}) = 0 (cf. [H] §18,

Theorem 1).

The formula on the right hand side of (@) has three parts: After exponentiation, the first part
(t — it5) determines a character of R and amounts to a translation of the probability measure
fty in question. The second part comes from a homomorphism (¢ + to/2) from R to R and
corresponds to the Gaussian part of our measure py. The third, and most intimidating looking,
part refers to the Poisson part of p,: It is - in essence - a fancy linear combination of terms of the
form ¢ — € — 1 which will reappear much later in this account (cf. (4.9)).

In the derivation of analogous Lévy-Khinchine formulas for infinitely divisible positive definite
functions on arbitrary locally compact, second countable abelian groups G in [[L1] or [@], one obtains
the same three parts as in (@) with the possible addition of a fourth term coming from potential
nontrivial open_subgroups of the group G.

Ever since [f], the discussion of infinitely divisible positive definite functions has been broadened
to include limits of uniformly infinitesimal arrays of probability measures on IR and, more generally,
on locally compact second countable abelian groups.

Definition 2. Let M = {:un,j’ n>1,1<j<k,} be a triangular array of probability measures on
a locally compact, second countable abelian group G. The array M is uniformly infinitesimal if

lim sup p, ; (G\NN)=0 (4.7)

n—oo 1§j§kn

for every neighbourhood N of the identity in G. Equation (@) s equivalent to the condition that

lim sup sup i, ;(9) —1/=0
n=00 1<k, geK

for every compact set K C G.

A uniformly infinitesimal array M converges to a probability measure i on G if the sequence of
probability measures (i, = Hle P js 0 = 1) converges to u in the weak topology (cf. /B] Section
11.6).
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4. From Central Limit Theorems to Continuous Tensor Products

The following result follows from [@] Theorem V.5.2 and [@] Theorem 12.5:

Theorem 4. Let G be a locally compact, second countable abelian group. If a probability measure
1 on G is the limit of a uniformly infinitesimal triangular array of probability measures on G, then
W 1s infinitely divisible.

Conversely, if G is connected and locally connected, and if p is an infinitely divisible probability
measure on G, then p is the limit of a uniformly infinitesimal triangular array of probability
measures on G.

For refinements and extensions of the convergence results for uniformly infinitesimal triangular
arrays of positive definite functions in [@] the reader may wish to consult the follow-up paper [L(]
by KRP.

FROM INFINITELY DIVISIBLE POSITIVE DEFINITE FUNCTIONS TO COCYCLES

If G is an arbitrary Polish group G, then (@) implies that every infinitely divisible positive def-
inite function ¢ on G defines a continuous, unitary, cyclic representation V' of G on a complex
separable Hilbert space A which can, for every n > 1, be written as the tensor product of n
copies of some other cyclic representation V,, of G on some Hilbert space #,. According to R.
Streater [L9], such “infinitely divisible representations” of G lead to the construction of factoris-
able representations of current groups and to interesting mathematical models of quantum fields.
KRP’s earlier interest in a Lévy-Khinchine formula for infinitely divisible probability measures on
locally compact abelian groups led him to be immediately captivated by the problem of finding an
analogous formula for infinitely divisible positive definite functions and, more generally, for limits
of uniformly infinitesimal arrays of positive definite functions on general Polish groups.
We start with two definitions.

Definition 3. A triangular array of continuous normalized positive definite functions ® = {¢,, ;/n >

1,1 <j<k,} on a Polish group G is uniformly infinitesimal if

lim sup sup !qﬁn,j(g) —1=0
n—,oo 1Sj§kn geK

for every compact set K C G.

Such a uniformly infinitesimal triangular array ® converges to a continuous positive definite
function ¢ if ¢ is the limit of the sequence (¢,, := Hfﬁl ¢ j,n > 1) in the topology of uniform
convergence on compact subsets of G.

As in Theorem @ one can show that limits of uniformly infinitesimal arrays of continuous
positive definite functions on a group G are infinitely divisible, and that the reverse implication
holds under certain hypotheses on the group G.

When I arrived in Manchester in 1969, KRP had just proved the following striking result:

Theorem 5. (/{7_3/, Theorem 11.2) Let G be a Polish group, and let ¢p: G — C be a limit of a
uniformly infinitesimal array of continuous normalized positive definite functions. Then there exist
an open subgroup G, C G, a continuous unitary representation U of G, on a complex separable
Hilbert space X with inner product {-,-), and a continuous map 6: Gy, — X such that

U,6(h) = é(gh) —d(g),
P(gh)p(g) ' d(h)~" = exp(d(h),d(g7"))
forall g,h € G,.

Any continuous function §: G, — X satisfying (@) is called a (1-) cocycle for the representation
U. Such a cocycle is a coboundary (or trivial) if there exists a z € V' such that

8(g)=Vz—2 (4.10)

for every g € G,. If two cocycles differ by a coboundary they are called cohomologous.
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FROM COCYCLES TO INFINITELY DIVISIBLE PROJECTIVE REPRESENTATIONS

After having proved Theorem a, KRP tried to obtain a converse to this result: Given a continuous
unitary representation V of a Polish group G on a Hilbert space KX and a continuous cocycle
0: G — X satisfying ), can one find a continuous infinitely divisible positive definite function
¢: G — C satisfying (1.9)7
At that time I had just read KRP’s notes [@] and noticed that the map L: G x G — C defined
by
L(g,g") = (3(9"),6(g™ ")) (4.11)
is a 2-cocycle:
L(g1,92) + L(9192: 93) = L(91, 9295) + L(92, 93) (4.12)
for all g;, 95,95 € G. Since the real part RL of L satisfies the equation
RL(g,9') = 5(16(g)I* + 16(g")1* — 16(g9")[1?)

for all g,g’, RL is a 2-coboundary, i.e., there exists a continuous map b: G — C such that

RL(g1,92) = b(g192) — b(g1) — b(ga)-

The imaginary part JL of L may or may not be a 2-coboundary, but it certainly satisfies the
cocycle equation () If we put

o(g,9") =exp(i-IL(g,9")), (4.13)

the resulting map o: G x G — S is again a 2-cocycle: It satisfies the multiplicative analogue

(91, 92)0(91 92> gs) =0(gy, 9293)‘7(92» 93) (4.14)

Of () fOI‘ all 91,92, 93 S G

In order to construct the putative positive definite function ¢ in (@) and its associated unitary
representation V on a Hilbert space A in (@) we introduce the symmetric Fock space Exp X over
X, given by

ExpX=COXDdKXRQgJ[/K & KXQ,K QK & -, (4.15)

where ®, denotes the symmetric tensor product of Hilbert spaces (cf. [@] pp. 29-30). For every
v e X, put
Expv=1® v & %(v@v) @ %(U@U@U)"' € ExpX.

If (-, -)) denotes the obvious inner product on Exp X, then
{(Expv, Expv')) = exp (v, ")

for all v,v” € XK. We denote by H C Exp X the closed linear span of the set {Expd(g) | g € G}.
For every g,h € G, let

Vy Expd(h) = exp (L(g, h) — [4(g)[*/2) Exp d(gh), (4.16)
where L is defined in () Since
(Vg Expd(hy), Vy Expd(hy))) = (Expd(hy), Expd(hy))

for every hy, hy € G, V, extends by linearity to a unitary operator on /. The map g = V, from
G into the unitary group U (F') is continuous, but will in general not be a unitary representation
of G: It is a projective representation satisfying

U(g, g/)Vgg/ = Vng/ (417)
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4. From Central Limit Theorems to Continuous Tensor Products

for all g,g" € G, where the multiplier o of V' is the 2-cocycle appearing in () By definition,
the vector v = Expd(1ls) = Exp0 € H is cyclic for this projective representation, and

®(g) = (Vyv,v)) = exp(—[d(g)[?/2) (4.18)

for every g € G. Hence

O(gg") @)~ @(g") " = exp(R(d(g"),d(97"))).

This isn’t quite what we wanted in (@) However, if o is a coboundary, i.e., if

o(g,99") = B(gg')b(g) " b(g")~" (4.19)

for some Borel (and, in fact, automatically continuous) map : G — S, then the map

~

Vg B(g)V,

is a continuous unitary representation of G, and ®(g) = ((ffgv, v)) satisfies that
(99")B(9) B (g") " = (V0. 0)

for every g € G. It is easy to check that the map $: G — C has all the good properties one could
hope for: It is continuous, normalized, positive definite, infinitely divisible, and it is a limit of a
uniformly infinitesimal array of continuous positive definite functions. Since this is obviously a
very nice situation, let me introduce some ad-hoc (and completely non-standard) terminology:

Definition 4. Let U be a continuous unitary representation of a Polish group G on a complex
separable Hilbert space K. A continuous 1-cocycle : G — X is rectifiable if the 2-cocycle o: G %
G — S in (4.13) is a coboundary in the sense of ()

Which conditions on the pair (V,0) will guarantee that ¢ is rectifiable?

Proposition 1. (1) A cocycle §: G — X is a coboundary if and only if it is norm-bounded.
(2) If 6 is a coboundary, then it is rectifiable.

For every g € G and

oo

Proof. (1) Suppose that § is bounded in the sense that K = sup .. [0(g)
ve X, let

Agz=V,x—0d(g).
Since ¢ is bounded, the set S = {A 0 | g € G} C X is bounded in norm, and so is the closed
convex hull C(S) of S in X'. By the Ryll-Nardzewski fixed point theorem [E] p. 444, there exists
a point z € C(S) such that A 2 = 2 for every g € G, so that J is indeed trivial. Conversely, if J is

a coboundary, then it is obviously bounded.
(2) If 6(g) = V2 — z for all g, then

L(g,h) = (3(h),0(g7")) = (Upz — 2, Uy 12— 2) — |2
= (Ugnz — 2,2) — |21?) — (U2, 2) — 21*) — ((Up2, 2) = | 2[*).-

g

Hence the cocycle o in () satisfies (E.lQ) with B(g) = exp(i-J((U,2,2)), and is thus a 2-
coboundary. O

If the 2-cocycle o in (#.13) is nontrivial (i.e., not a 2-coboundary), the projective representation
Vin () - () is again infinitely divisible in the sense that there exists, for every n > 1, a cyclic
projective representation V™) of G on a Hilbert space 7™ with multiplier ¢ = exp(i-JL/n) and
cyclic vector v(™ such that V is unitarily equivalent to the projective representation V" @ .- @ V(™
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of G on the n-fold tensor product K™ ® - ® H ™ restricted to the cyclic subspace generated by
M @@ v,

Since there is such a close correspondence between continuous 1-cocycles of continuous uni-
tary representations of G and continuous infinitely divisible projective representations of GG, any
attempt to classify all infinitely divisible projective representations of G' (and, in particular, all
infinitely divisible positive definite functions on G) would require a classification of all 1-cocycles
of continuous unitary representations of our Polish group G.

If G is locally compact and second countable, the usual decomposition techniques allow one to
restrict one’s attention to irreducible representations of G: If we can write a unitary representation
U of G as a direct integral U = ff U* du(w) of irreducible unitary representations over some finite
measure space (€2, i), then [[13] Theorem 13.2 shows that every continuous cocycle § for U is of
the form 0(g) = f;a 0“(g) dp(w), where each §“ is a continuous cocycle of the representation U“.

For example, if G is abelian, every irreducible unitary representation U of G is one-dimensional
and thus a continuous homomorphism from G into S. If U, # 1 for some h € G then U, —1 is
invertible, so that every v € / = C is of the form v = U,,b — b for some b € C. In particular, any
cocycle 0 for U satisfies that

O0(h)=U,b—0

for some b € H. If b’ € G is a second element with U, # 1, then
(h") =Upb" =V
for some 0" € C, and

S(h') = U, 8(h') + 8(h) = Uy b/ — Uyt + Upb—b
= Uh/é(h) + (5(}7/) == Uhh/b — th+ th/ - b/,

so that
(U, = 1)Uy —1)(b—b") =0

and b =b’. It follows that §(g) = U b—b for every g € G, i.e. that ¢ is trivial.

Proposition 2. Let G be an abelian Polish group, U a continuous irreducible representation of G
on H =C, and §: G — C a cocycle of V. If U is nontrivial, then § is a coboundary (cf. (#.10)).
If U is trivial (i.e., if U, =1 for all h), then § is a homomorphism from G into C.

Proposition R might give the impression that, for abelian groups, only trivial representations
could have nontrivial cocycles (i.e. cocycles which are not coboundaries). However, the Lévy-
Khinchine formula (4.6) is evidence that non-compact locally compact abelian groups can have
unitary representations with unbounded cocycles, but without nonzero invariant vectors. For
obvious reasons such cocycles are sometimes called generalised coboundaries. These generalised
coboundaries give rise to the “Poisson parts” of the Lévy-Khinchine formulas (cf. [[L3] Theorem
16.3).

Furthermore, if §: G — X is a nontrivial homomorphism arising from the trivial representation
of G on a Hilbert space X, then ¢ is not only nontrivial (since it is unbounded), but it can also
give rise to a nontrivial 2-cocycle o: G x G — S in ({.13) — () A simple example of this is
described in [@] §8: if G = X = C and U is the trivial representation of G on X, then the
identity map d: z  z from G to K defines a cocycle for U on X which gives rise to the projective
representation V' in (4.16) with multiplier o (2, z5) = exp(—i - J(z527)) in ()

In [@] Part III there are a few further results about cocycles for irreducible representations of
other classes of groups (e.g., connected nilpotent or semi-simple Lie groups), but a more complete
picture arises from the papers [4] by P. Delorme and [@] by A.M. Vershik and S.I. Karpushev.
The latter paper explains in particular the apparent scarcity of nontrivial 1-cocycles for irreducible
unitary representations of locally compact groups (for terminology we refer to [@])
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4. From Central Limit Theorems to Continuous Tensor Products

Theorem 6. (@, Theorem 2) Let G be a locally compact second countable group, and let V' be
an irreducible unitary representation of G on a complex separable Hilbert space X which has a
nontrivial continuous 1-cocycle. Then V is infinitely small (i.e., Hausdorff inseparable from the
trivial representation).

For nontrivial irreducible unitary representations, non-rectifiability of 1-cocycles is, of course,
even “scarcer” than non-triviality. The following proposition is a corollary of [] p- 40, Corollary 1.

Proposition 3. If G is a connected and simply connected semi-simple Lie group, U a continuous
irreducible unitary representation of G on a complex Hilbert space X, and §: G — KX a continuous
cocycle for V| then § is rectifiable in the sense of Definition g

FACTORISABLE PROJECTIVE REPRESENTATIONS

Before moving on to representations of current groups in the spirit of @] and [@], let me point out
an important property of the projective representation V' of G on the Hilbert space /' C Exp X
arising from a unitary representation U of G on X and a cocycle 6: G — X in () - (@)
if X can be written as a direct sum X = K| & X, of two closed U-invariant subspaces we can
decompose the cocycle §: G — X as a direct sum d, @ d, of two cocycles §,: G — X, and construct
the corresponding infinitely divisible projective representations V; of G on #;, C Exp X, as above.
Then the projective representation V of G on K is unitarily equivalent to the tensor product
representation V; ® V5 on the tensor product 7| ® H 4 of the spaces 7.

This elementary observation can be developed to construct factorisable representations of so-
called current groups. The following exposition is based on [[12] — [[L3].

Assume for convenience that X is a compact metrizable space with a nonatomic Borel prob-
ability measure p, G a Polish group, U a continuous unitary representation of G on a complex
Hilbert space X with inner product (-,-), and §: G — X a continuous 1-cocycle of U. We denote
by K = f;e Kdu = LZ(X , X) the Hilbert space of square-integrable maps f: X — X with inner
product [f, f'] = [ (f(2), f'(2)) du(z).

Let I' = C(X, G) be the group of continuous maps v: X — G, furnished with pointwise multi-
plication and the topology of uniform convergence, and define a continuous unitary representation
U of I' on XK setting

(U, 1)) = U,y f(2)

for every vy € T, x € X, and f € K. The cocycle § gives rise to a continuous 1-cocycle §: I' — K
for U with

and
U, 8(7) =8(172) —8(71)

for all ~, 7, cl'and z € X.
As in (4.15) we define the symmetric Fock space Exp K with inner product ((-,-)) and set, for
every 7,7 €T,

V., Expd(7') = exp (L(v,7") — 5[6(7)[?) Expd(v'), (4.20)

where
L(v,7") = [6(v),86(v 1.

We denote by H C Exp K the closed linear span of the set {Expéd(v) |y € T'}. Asin (@),
() and () we observe that_the maps (71,7,) H L(71,72) € C and (vq,7%) = 0(v,7%) €S

are 2-cocycles. The maps V, in (1.20) extend by linearity to unitary operators on J, and
0(7? FY/)V*yfy' = VWV,Y/,
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for all ,7" € T', where
a(v,7") = exp(i- I(L(v,7))-

As in (E.18) we note that the vector Exp (1) is cyclic for the projective representation V on J.
In order to explain the factorisability property of the cyclic projective representation V of I’
on H we set, for any nonempty, open subset O C X,

IFpy={yeTl|~(x) =14 for every z € X\ O}

and denote by J , the closed linear span of {Expéd(v) |y € I'p} C H. If O, 0, are two disjoint
nonempty open subsets of X, then

and the restriction to I'y 9, of V is unitarily equivalent to the representation (v;,7,) = V., ® V.
of Ty xT'y,. For further results and details concerning factorisable representations of current
groups arising from cocycles of unitary representations we refer to the papers [20], 1] and [f].

The factorisability of V means that the operator algebras generated by the unitary operators
{Vw | v € I‘Oi}, 1 = 1,2, are independent. For physical considerations this local independence
condition should really be weakened to hold only if the closures of the sets O,,¢ = 1,2, are
disjoint. In [] and [@], KRP and I made attempts in this direction, where we considered the
group I' = CF (R, G) of all C*°-maps with compact supports from R to a connected and simply
connected Lie group G. By viewing the elements of I as smooth maps from R into a semidirect
product G of G with the exponential group of a Lie algebra involving the first n derivatives
of the maps v: R — G (the n-th Leibnitz extension of the Lie algebra of G) and constructing
factorisable representations of this latter group along the lines of [ﬁ we obtained representations
of current groups with slightly more restricted factorisability properties.

After 1975, KRP and I still collaborated on a couple of occasions (cf. [@], [@]), but by that
time our research interests had begun to diverge, and KRP’s focus had moved on to quantum
stochastic calculus, quantum probability and related problems. However, my memories of KRP’s
enthusiasm for mathematics, his intellectual generosity, and his — and Shyama’s — personal kindness,
remain undimmed. Some years ago I was mistakenly listed as one of KRP’s former PhD students
in the Mathematics Genealogy Project; although this is factually incorrect, there may nevertheless
be a grain of truth in this mis-attribution.
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Dedicated to the memory of K. R. Parthasarathy

I first met Professor Parthasarathy when he was visiting Sambalpur university where I was a
postgraduate student. He then stopped over at Bhubaneswar on his way to Delhi. This provided
me an opportunity to talk to him in a somewhat informal atmosphere. After several years, I joined
the Indian Statistical Institute Kolkata in 1986. Soon after, Professor Parthasarathy invited me
for a short visit to the Delhi Center of the Indian Statistical Institute. He was, of course, well
known for his very meticulously prepared lectures that he delivered with great clarity. So, when
I was asked to give a lecture with Professor Parthasarathy in the audience, I was very nervous. I
remember to this date how during my lecture he was making several suggestions for picking better
notation among a myriad of other things. I am sure this and many other friendly tips over the
years has made me rethink my own approach to both teaching and research.

In the early nineties, together with my colleague Bhaskar Bagchi, I was trying to understand
the Wallach set: Let K : X x X — C be a positive definite kernel defined on a set X, that is, the
n x n matrix (K(z;, xk))):kzl is positive definite for all subsets {z,...,x, } of X and all n € IN.

The Wallach set of the pai’r (X, K) for any bounded domain X in C" is the set
{A> 0| K* is positive definite},

where K is assumed to be holomorphic in the first variable and anti-holomorphic in the second.
Moreover, K* is defined by first defining K (w,w)* for any A > 0 and then defining K(z,w)*
by polarizing the power series of the real analytic function K (w,w)” in a neighbourhood of the
set {(w,w) | we X}. In [@], topics closely related to the Wallach set are discussed. Therefore,
I thought it would be great if KRP (by now, like everybody else, I have switched to addressing
Professor Parthasarathy by the more familiar name of KRP) can visit us at ISI Bangalore and give
a few lectures on positive definite kernels. To my delight, when I checked with him, he happily
agreed and delivered a series of mesmerizing lectures on positive definite kernels. He left his very
detailed and complete lecture notes with me. Although, he never said it, I think, the idea was for
me to convert his carefully prepared handwritten notes to a more formal set of lecture notes or a
book. It is entirely my misfortune that I never got around to actually doing it.

A week long conference, “Mathematical Foundations of Quantum Mechanics” at IISER Kolkata
in the year 2010 provided another opportunity for me to talk to KRP at length. After my lecture
on imprimitivity in this conference, he said that I should learn Quantum Mechanics. We used
to take long walks in the evening around the campus. During these long walks, he made it a
point to patiently explain some of the basic principles of Quantum Mechanics to someone who had
absolutely no idea about the subject. Among other things, he recommended that I get hold of a
copy of “PCT, Spin and Statistics, and all that” and read it. Following his advice, of course, I
bought the book promptly but I can’t say I have been able to read much of it. Nevertheless let
me attempt to describe a version of the imprimitivity theorem due to KRP @] that is both deep,
like many of his other theorems, and is at the confluence of the broad themes of Representation
theory and Quantum mechanics.

5.1 STATES

We assume all Hilbert spaces are complex and separable and all operators are bounded. Replace
a Borel o- algebra by the lattice P (%) of projections on a Hilbert space /' and a Borel measure
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by a function,

o0 o0

p: P(H) — [0,1], satisfying pu(0) = 0 and u(I) = 1; pu( V P)=> uPp)

i=1

whenever P,P; = 0 for every i # j. The map p is called a state on P(J). Examples are easy to
construct: Given a unit vector w in H define p,, : P(H) — [0,1] by setting p,,(P) = (Pu,u). Are
there other states? In general, we have the following theorem due to Gleason.

Theorem 7 (Gleason). Any state p must be of the form p(P) = tr(PT) for some non-negative
operator T' on a Hilbert space H , dim(H') > 3, with tr(T) = 1.

Since 7' is a non-negative operator with trace 1 there exists an orthonormal set of eigenvectors
{uj 1= 1,2,---} of T' with Tu; = Au;, A; > 0, E;’il A; =1, such that

Consequently, {u,, | [u] = 1,u € H} are the extreme points of the convex set consisting of all

states. These are called pure states. For a pure state u,,, we have p,,(u) = p,(cu) for any c in the

unit circle T. We can therefore identify pure states with elements of the Projective Hilbert space

P () obtained by identifying any two unit vectors u and v in K if u = aw for some a € T.
Suppose that T' : P(H) — P(H) is a one to one onto map satisfying

(i) I'(0) =0,T(1) = I;
(i) T (\/j Pj) = \/]I‘ (Pj> ,T </\j Pj> = /\jI‘ (Pj) for every sequence {Pj} in P(H),
(iii) (I — P) =1—T(P).

Then T is called an automorphism of P (% ). All such automorphisms constitute a group under
composition. Let Aut P(H') denote this group. Evidently, if U is a unitary operator on ', then
the map I'y; : P(H) — P(H) defined by
I';(P)=UPU ', PeP(H)

is an automorphism. Are there other automorphisms? Wigner’s theorem says that every automor-
phism I" of P(#) is induced in this manner by a unitary or antiunitary operator (UA operator in
short), namely, a map V' : H — H that is onto, V(u+v) = Vu+ Vo forallu,v € H,V(cu) = cVu,
ce€Cand u € H and (Vu,Vv) = (v,u) for all u,v € K.

Theorem 8 (Wigner). Let H be a Hilbert space with dim(H) > 3. Then to every automorphism
T of P(H) there corresponds a unitary or antiunitary operator U satisfying

[(P)=UPU ' forall P e P(H).

If V is another unitary or antiunitary operator satisfying the identity I'(P) = VPV ™! for all P
then there exists ¢ € T such that V = cU.

Complete self-contained proof of Gleason’s theorem as well as the theorem of Wigner is in [@]
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5.2 PROJECTIVE UNITARY ANTIUNITARY REPRESENTATIONS

All unitary and antiunitary operators on # form a group U A(H ). The product of two antiunitary
operators is unitary. The product of a unitary and an antiunitary operator is antiunitary. The
group U(JH) of all unitary operators is a normal open subgroup of UA(H ) and the quotient
UA(F)JU(FH) consists of two elements. Let 7w(FH) denote the compact subgroup {cI,|c| = 1}.
Then 7(H') is the centre of U A(H ). Wigner’s theorem implies that there is a group isomorphism
between Aut P() and the quotient group I (H) := UA(H)/x(H). The group UA(H) with the
weak topology (equivalently, the strong topology) inherited by it, is shown in [[l, page. 308] to be a
complete and separable metric group. When endowed with the quotient topology, [[(EL( ) becomes
a separable metric group. Moreover, @7 Lemma 2.3] implies that it is actually a complete and
separable metric group. Let
~ L UAH) — U(H)

be the canonical quotient homomorphism. Thus we may topologise Aut P(H') by giving it the
quotient topology of Z?(?[ ) through Wigner’s isomorphism. This makes Aut P () a complete and
separable metric group. A sequence {I',} in AutP(H) converges to an automorphism I" if the
weak limit, as n — oo, of I, (P) is I'(P) for every P € P(H ). Moreover, there exists a Borel
cross-section for ~, namely, a one to one Borel map 7 : & () — UA(F) such that n(U~)” = U™,
see [m, Corollary 2.2].

Let G denote a locally compact second countable group equipped with the natural Borel struc-
ture compatible with the topology. Also, for the sake of brevity, we write Il instead of ?1(7{ ). As
before, it is equipped with the quotient topology.

A Borel homomorphism from G into Il is called a projective unitary antiunitary representation
or simply a PUA representation of G in .

A well-known theorem due to Mackey (cf. @: Theorem 2.2]) states that if G is a locally compact
second countable group and H is a separable metric group, and 7 : G — H is a Borel homomor-
phism from G into H, then 7 is continuous. Since s a separable metric group, it follows that the
map g W(Ug) is continuous. Thus, any PUA representation of G is continuous, see @7 Lemma
3.1].

5.3 MULTIPLIERS

The lifting of a projective unitary representation to a multiplier representation is well-known. In
the paper [, first, how to lift PUA representations to multiplier representations (see below) is
discussed. This is necessarily more complicated since both unitary and antiunitary representations
are involved. Secondly, the imprimitivity theorem due to Mackey, originally proved only for projec-
tive unitary representations is now proved for PUA representations. Let me conclude by providing
some details briefly of the imprimitivity theorem of KRP following @]

Suppose that g — U,~ is a PUA representation of G. Making use of the cross section 7,
construct a Borel map g — (UQN) from G into UA(H). Since n (UgN)N =U,~, it follows that
U,=n (U gN) without loss of generality. Then g — U, is a Borel map and for any two elements

91,92 € G, (Ug1 UQQ) = Uy ,,- Hence there exists a complex number o (g, g,) € T such that

Uy Uy, =0(91,92) Uy g, forall gy, g, € G. (5.1)
Assume that U, = I, where e is the identity element of G. Then
ole,g) =0(g,e) =1 forall g€ q. (5.2)

Computing U, U, U, in two different ways, as U, <U92U93> and (Ug1 ng) U

g0 1t is shown (see
[m, Equation (3.3)]) that ’

‘7(9179293) g (9%93) if g, € G*

} . ~ (5.3)
0(91,9293) 0 (92,93) if g, € G,

0 (91,92) 7 (9192, 93) = {
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where the set G is the open and closed normal subgroup { g : Uy is unitary modulo m(H )}, see
[m, Lemma 3.1], and G~ := {g: U, is antiunitary modulo ()}

A Borel function ¢ defined on G x G and taking values in T is called a multiplier if it satisfies
Equations (@) and (@) A Borel map g — U, from G into UA(J) is called a multiplier
representation if there exists a multiplier o such that Equation (@) is satisfied. When G~ is the
empty set, that is, U,™ is a projective unitary representation, Equations (@) and (@) coincide
with the usual multiplier identities, see [B, page 2].

Theorem 9. (Theorem 3.1, @]) Let G be a locally compact second countable group and g — Uy
be a PUA representation of G. Then there exists a multiplier representation g — V, of G' such
that V- = Uy for all g € G. Conversely every multiplier representation g — V,, of G determines
a PUA representation g — V; of G.

5.4 IMPRIMITIVITY

We first recall Mackey’s imprimitivity theorem and then describe the non-trivial generalization of
this theorem obtained by KRP.

Let G be a locally compact second countable group and X be a locally compact G - space, that
is, there is a map o : G x X — X, such that for a fixed g € G, the map x — a,(z), a,(7) := a(g, z)
is bijective and continuous on X, moreover, g — «, is a homomorphism. The action of G on X
is said to be transitive if for every pair z;,x, in X, there is a ¢ € G such that g-x; = =z,
g-z = a(g,z). Let H C G be a closed subgroup and let X := G/H be the space of cosets:
{gH | g € G}. Equipped with the action of G by left multiplication: ¢'(¢H) := (¢'9) H,¢', g € G,
the coset space X is a transitive G- space.

Let (X, B) be the Borel measurable space, and note that each g € G defines a continuous map
on X by our assumption. Given a o-finite measure u on X, define the push-forward g u of the
measure g by the requirement

(g.1)(A) :==p(g-A), g-A:i={g'-s|sc A}, A€ B.

The measure p on X is said to be invariant if g, = p and quasi-invariant if g, u is equivalent
(mutually absolutely continuous) to u for all g € G. There is a quasi-invariant measure uniquely
determined modulo equivalence on X, see page 313 of [[].

If G is second countable, then there is a Borel cross-section p : G/H — G, that is, a Borel
subset B C (G that meets each coset of H in exactly one point. Thus, each g € G can be written
uniquely as g = g,9, with g, € H and g, € B, see page 315 of [[I].

A spectral measure, or a projection valued measure, defined on X is a projection valued map
P: B — P(H) such that P(X) =1 and P(UE},) = Z:il P(E,) for any disjoint collection of sets
E,, k=1,2,...,in B, where the convergence is in the strong operator topology.

A system of imprimitivity (#,U,, P(E)) introduced by Mackey consists of a projective unitary
representation U of a second countable locally compact group G on a Hilbert space ' and a
regular J{-projection-valued measure P on X such that

U(g)P(E)U(g)™ = P(g- E) (5:4)

for all g € G and every Borel subset E of X.

The imprimitivity theorem of Mackey (involving only projective unitary representations) has two
parts: Firstly, any transitive imprimitivity (7, U,, P(E)) is equivalent to a canonical imprimitivity,
where H = L?(X,u, H,), U is a projective unitary representation on L?(X,u, ), that is,

(U(g)h)(l‘) = c(g, x)(g : h)(l'), h e L2(X7M7 .7{”)7 ge Gv (g : h)(l’) = h(g : .Z'),

where ¢ : G x X — U(H,)) is a Borel map taking values in the group of unitary operators acting
on the Hilbert space #,, of dimension n. For U to be a homomorphism, the function ¢ must be a
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cocycle. The spectral measure P is defined, via the functional calculus, by setting P(E) = My,
E € B and 1p is the characteristic function of E. Here M; denotes the multiplication by f,
f e L(X,u,H,) on L*(X,pu,H,). Secondly, the imprimitivity theorem asserts that such a
multiplier representation is induced from a unitary representation of the subgroup H acting on
the Hilbert space J¢,,.

In the generalization of Mackey’s imprimitivity theorem obtained by KRP, the projective uni-
tary representation is replaced by a PUA (projective unitary antiunitary) representation. An
automorphism of the lattice of projections induces a map on the state space and that along with
Wigner’s theorem discussed in the beginning not only justifies such a generalization but makes it
indispensable. However, there are new complications arising from the decomposition of the group
G = G"[-JG~. As we have seen, the multiplier identities are a lot more complicated.

Obtaining a canonical form of the imprimitivity when both projective unitary and antiunitary
(PUA) representations are involved is the first non-trivial step in the generalization of Mackey’s
imprimitivity theorem to the case of PUA representations. Let me reproduce below how KRP
achieves this in @], where his Ly(u,n) stands for what we have called L*(X, u, #,,).

“In the space Ly (p,n), the complex conjugation which maps f to f is a canonical antiunitary
operator. By the discussion in §2, it follows that every antiunitary operator is the product of a
unitary operator and this conjugation. Making use of this fact and following the arguments of
Mackey [2] one can prove the following lemma.

Lemma 4.2. Let {Ly(u,n),V,, P°(E)} be an imprimitivity system for G on X. Let G =
G UG be the UA decomposition of G associated with the PUA representation g — V,~. Then
there exist functions C(g,z) and D(g,z) defined respectively on G* x X and G~ x X and taking
values in the space of unitary operators in C™ such that

(Vof) () = [j,i; (9‘1@]2 Clgg7'z) f(g7tz) if geGF

1
dp 1 317 1 N1 . -
- [f5 )] Pt i gec
where 19 is the quasi invariant measure defined by the equation pu9(E) = u(gE),E € By

The second part of the Imprimitivity theorem is to show that the unitary representation U in
any system of imprimitivity based on X = G/H is a representation induced from a representation
k of the subgroup H, that is, the representation U is of the form

U(9)f)(x) = Wﬁ(hﬁ(gl ).

Here h € H is determined from the relation gp(g~'-x) = p(x)h, € X, where p: G/H — G is a
Borel cross-section.

It is impossible to go through all the intricacies of the powerful generalization obtained by
KRP of Mackey’s imprimitivity theorem in a short article like this one. Therefore, I have decided
to conclude by reproducing one of the main theorems of KRP from @] I hope that the reader will
not have any difficulty with what is being said and in appreciating the depth of what is involved.
I am sure this will be motivation enough to read the original work of KRP.

Theorem 10. (Theorem 4.1, @]) Let G be a locally compact second countable group, H C G a
closed subgroup and X = G/H the homogeneous space of left cosets. Let {?[,UQ,P(E)} be an
imprimitivity system for G on X. Let G = GT UG be the UA decomposition of G with respect
to PUA representation g — Uy, g € G. Suppose that Gtacts transitively on X and o is the
multiplier of the representation g — U,. Let v be a one one Borel map from X into G* such
that 7y is the identity map of X onto itself. Then there exists an equivalent imprimitivity system
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{L2(,u,n),Vfg,P0(E)} where

1
o(9,7(g"')) {( dp ) 1 } =
%4 = _— M1 ,

Vol = 0,260 g (g7 W) 970 Moo i (750)
W 1S a quasi invariant measure, n is a finite or countable cardinal, h — M, is a o- representation
of H and P° is the canonical projection valued measure on By. This imprimitivity system is
irreducible if and only if the o representation h — M, of H is irreducible.

In the statement of the theorem reproduced above from [m], (i) P is the canonical projection
valued measure on L?(j, n) as described at the bottom of page 313, [[l], and (ii) a “o- representation”
is a multiplier representation with multiplier o, Definition 3.3, [Eh

The slight familiarity that I have with the terminology from mathematical physics is mostly
from my conversations with KRP. This article, based on one of the papers of KRP that I have
always admired, is dedicated to his fond memory.
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At a conference at the University of Columbia (1995)
L. Accardi and T. Hida are seen on the two sides of KRP and
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In the paper [g] we have tried to give an idea of some of the main achievements in the huge
scientific production of K. R. Parthasarathy (KRP or Partha in the following) highlighting the
conceptual structures behind them and some, among the many, possible developments. KRP’s
production, in more than 60 years of uninterrupted scientific activity, would have been sufficient
to create the reputation, not for one, but for three or four mathematicians of the highest inter-
national level. The fact that his main contribution to science has been the creation, with Robin
Hudson, of quantum stochastic calculus, risks to let people forget about his contributions to the
theory of infinitely divisible laws of classical probability and its quantum development into the
theory of factorizable structures, to the theory of group representations, to classical and quantum
information as well as to classical statistics.

His books are masterpieces of clarity of exposition and completeness of information: some of
them will remain as classics of mathematics. He had many students and many collaborators, but
they constitute a tiny fraction with respect to the generations of mathematicians he has influenced
with his books and papers.

This note is dedicated to some memories of my personal interactions with KRP in a scientific
dialogue that has continued uninterrupted for fifty years and which for me continues even after his
passing. My emphasis will be on the many things I learned from him directly, from long discussions
over the years, or indirectly, by studying his papers and books or listening to his talks or lectures.
I will quickly describe how, some of the seeds planted in my brain through these interactions
blossomed, sometimes years, sometimes decades later. The message I would like to convey is that
the study and meditation on his writings has great inspirational potential for those who intend
to participate in the construction of the new historical level of probability theory that begun to
emerge in the early 1970s with the development of quantum probability.

The remembrance of our first meeting is still so vivid in my memory that I can see it in my
mind like a movie. It was in the summer 1982, during the Q P1—conference in Villa Mondragone. It
was the second public occasion in which he and Robin Hudson were presenting at a conference the
just born quantum stochastic calculus (QSC), not yet completed with the preservation process:
no published paper about it had yet appeared.

In the first one, a few months earlier, they had expounded the contents of the two papers: [@],
with emphasis on the classical formulation of the basic quantum martingales, and [p] dealing with
the purely quantum case.

Their contribution to the @@ P1—conference [@] was a development of [E], because it was addressed
to a public of quantum probabilists and the classical language was abandoned except as a pure
analogy.

I was sitting next to KRP, who had not yet given his talk, and Robin was expounding the
new stochastic calculus to a public who, like me never heard about such a thing. I knew, from
Robin’s previous work on the quantum central limit theorem, that he was realizing, in two ways,
i.e. through the position and momentum fields, the classical brownian motion process inside the
boson Fock space over L?(0,+00), but I was missing the main point because I had the feeling
that the techniques used were of classical probability. I remember expressing under my breath,
during Robin’s talk, this doubt to KRP by saying: But these are two classical processes! His
immediate reply, Yes, but they do not commute!, made me think. I looked more carefully at Robin’s
transparencies on the screen(in 1982 they were still the main tool used in conferences!), where the
precise commutation relation between these two classical brownian motions was written, and for
the first time I realized that QSC is a stochastic calculus in which two classical brownian motions,
satisfying a very special and non—trivial commutation relation are simultaneously considered. I was
not able to understand much more than this vague intuition, because at those times my knowledge
even of classical stochastic calculus was very superficial, since I had never used it in my research.
I could not imagine that, in the next twenty years, my research would have rotated around this
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barycenter, like the planetary system around the sun. Yet this vague intuition was enough to
convince me that I was in front of something deep and I am at a loss for words to describe my
happiness when Partha, towards the end of the conference, approached me asking if I wanted to
visit him at the Indian Statistical Institute (ISI) in New Delhi.

The two months I spent at ISI in Delhi in the early 1983, were probably the most intensive
period of my scientific life, in the sense that I think that never before or after in my life I learned
so many things in such a short period. Partha’s knowledge of mathematics was deep and wide
and he loved to transmit it to younger people. On my side, I perceived this depth and width and
was eager to treasure even the smallest piece of information I received from him. I dedicated my
evenings to improve and expand the notes I had been taking during our conversations in the day,
trying to fill my comprehension gaps and to complete some of the proofs, that were often sketchy.
However the material kept on accumulating at such a rate that the task I had set for myself became
impossible to accomplish. These notes continued to accompany me throughout my scientific life
up to today and I periodically take up and elaborate some parts of them in various directions,
both out of pure curiosity and for concrete applications to my research work. These notes turned
out to be a treasure for me in later years but, during my 1983 stay in ISI in Delhi, I have not
had time to delve into all the numerous scientific stimuli received from Partha because the main
part of my efforts were dedicated to learn from him quantum stochastic calculus (and classical as
well: I think I have been one of the first mathematicians to learn classical SC as a corollary of
quantum SC, rather than learning QSC as a generalization of classical SC). It was clear for me I
was experiencing a unique opportunity in my scientific life and I was determined not to waste it.
Among the many things I learned from Partha in that period one played a particular role. He
told me that Lévy had proven that any martingale with continuous trajectories is, up to a random
time change, a classical brownian motion (BM). Since quantum stochastic calculus was based on
quantum brownian motion, it was natural to wonder if the above mentioned Lévy’s characterization
could be extended from classical to quantum BM. I made a formal calculation that indicated that
such a characterization should be possible: it was far from being a proof, just an intuitive suggestion.
So, when I explained this idea to Partha, I was afraid he would have dismissed it as nonsense. To
my surprise, that wasn’t the case: he showed interest and we spent long hours over the next few
days discussing the possible ways to make this intuition rigorous.

The problem was fraught with difficulties, both technical and conceptual: the essential as-
sumption in Lévy’s theorem was the continuity of trajectories, but trajectories do not exist in the
quantum case; moreover, nobody up to that moment had considered the quantum analogue of a
random time change in a QSDE (simply because such equations had not yet been invented); but
the crucial issue was that the boson commutation relations (CR), which are the starting point to
define quantum BM, were not available. On the contrary, not only the CR, but even the gaussian-
ity of the state, had to be deduced starting from two purely probabilistic assumptions (martingale
property and continuity of the trajectories) of which only one had a quantum analogue at that
time. Therefore, to extend the proof technique developed by P. Lévy to the quantum case, we
could not rely on the Hudson—Parthasarathy stochastic calculus because the central aim of our
research was to deduce the quantum BM, not to start from it.

Evidently such an undertaking required time while, precisely in those days, my stay at ISI in
Delhi was coming to an end. We therefore continued to work in this direction by communicating
through letters and, after just over a year, we were able to present a first version of our results [§] at
the QP2 conference held in Heidelberg from 1 to 5 October, 1984. The paper [H], that was accepted
in 1986, but appeared in print only in 1988, summed up the minimal analytical conditions sufficient
to guarantee the emergence of the boson commutation relations and of the gaussian nature of the
quantum brownian process from quantum probabilisic assumptions of Lévy type. The assumptions
in [[7] were slightly stronger than in [§] with the exception of the fermion case that, differently from
[B], was deduced from the unification result, obtained one year before by Hudson and KRP [2].
The most difficult conceptual problem, i.e. how to express continuity of trajectories in a quantum
context, was eventually overcome with the observation that a condition on the 4th moments of
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a classical stochastic process that, according to a theorem due to Kolmogorov, guaranteed the
continuity of trajectories of the process, made sense also in the quantum case. So we simply took
this sufficient condition as a quantum analogue of the continuity of trajectories and it turned
out that this was sufficient to prove the coincidence of the mutual quadratic variation with the
conditional quadratic variation, which is the crucial distinction between diffusions and processes
with jumps. The history of quantum Lévy theorems had many sequels, in different ramifications
of quantum probability, but for reasons of space, these will be discussed elsewhere.

I limit myself to mention that the fourth moment condition, introduced in [[] was used in
classical probability, and became very fashionable in that field, about twenty years later to prove
results similar to those considered by us in the quantum case (which includes the classical).

The above mentioned two papers are the only joint papers I have with Partha, but several of

my own articles after them have been affected by his influence. I would like to conclude this small
note giving a few examples of how the influence of the notes I took on his Delhi teachings in 1983
has materialized concretely in my own research activity.
One of the first things KRP taught me was the connection between the classical theory of random
processes with independent and stationary increments, the theory of projective representations of
groups and the process of second quantization. He explained to me how all these connections were
born in a paper of Kolmogorov on helices in Hilbert spaces, evolved twenty years later in a series of
papers by Araki and Araki-Woods who introduced the notion of factorizable structures and were
further extended by himself and Schmidt in their Springer LNM volume [H] and later by Guichardet
(see [@] for more details on this issue). Curiosity for these structures is one of the themes that has
accompanied me since 1983 till the present time, but about twenty years after my first visit to
Delhi, I noticed that some factorizable structures naturally emerged in the programs of non—linear
quantization and of C*-quantization (which for reasons of space cannot be described here), so I
decided that the time had come for me to go deeper into this issue and I begun to look at the
original papers. In this historical-scientific research, I discovered that, in Kolmogorov’s original
papers [@}, [@], where he first introduced Hilbert space techniques in probability theory, using
them to determine the structure of stationary processes with independent increments, the author
does not use the term heliz but generically speaks of curves in Hilbert space. In [9] it is described
how this approach led to the notions of positive definite and conditionally positive definite kernels,
to the identification of Kolmogorov’s curves in Hilbert space with the increments of a real valued
stationary increment stochastic process indexed by the intervals of R and with what today we
call 1-cocycles (for the action of R on itself by translations), to the fact that any such process is
canonically associated to a Hilbert space uniquely determined by its Lévy-Khinchine function and
finally to the proof that this Hilbert space is naturally identified to a boson Fock space, ... .

In addition to probability theory, Kolmogorov’s papers had a tremendous influence in many
branches of mathematics. One year after the first Kolmogorov paper, which was set in complex
Hilbert spaces, Schonberg and von Neumann [R1] discussed the real Hilbert space case. Shortly
after, Aronszajn [[L1], describing a part of Kolmogorov’s construction, introduced the name repro-
ducing kernels and this name caught up in the western literature, giving rise to an intensive line
of research on various aspects of these kernels which continues to this day. To my knowledge, the
first use of the term heliz in Hilbert space is due to Masani [@], [@] A. M. Yaglom extended
Kolmogorov’s approach from stationary processes to translation invariant random fields and he
also considered kernels given not by functions, but by positive definite distributions (a direction
pursued later also by W. von Waldenfels). Quite interesting is another, relatively recent, extension
of Kolmogorov’s theory due to Fuglede, where helices are generalized to spirals.

Definition 5. (@) A (logarithmic) spiral of order a € R is defined as a continuous path ¢ - x(¢)
in a real Hilbert space such that

lz(ty +1t) —x(ty + 1) = e*|a(ty) —x(ty)| .ttty €R. (6.1)

For a = 0 the spiral becomes a helix.
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This definition highlights the fact that, in the early developments of the theory, the natural
environment for the notion of helix, generalizing that of increments of a stochastic process, was
that of a normed (or at least metric) space. As testified by the above mentioned Fuglede’s paper,
this terminology continues to be used nowadays.

However, in the extensions of Kolmogorov approach to the theory of stationary independent
increment processes that begun with Araki’s work [L0] and culminated with the KRP—-Schmidt
monograph [p], the various generalizations of the notion of increments of a process (to groups,
or spaces acted upon by a group, or Lie algebras or co—algebras, ...) are described in terms of
the more algebraic notion of 1-cocycle (for the action of a given group). The last part of the
monograph [f], dedicated to the determination of the structure of the 1-cocycles for various types
of group actions, suggests that the use of the cohomological terminology derives from the work
of Bargmann who determined the structure of the 2-cocycles of the additive group R¢. In the
theory of group representations, the term 2—cocycle is used as a synonymous of multiplier (or of
logarithm of multiplier) and it would be historically interesting to know if the theory of independent
increment stationary processes played a role in the development of this terminology. In any case
it would be interesting to understand if, in any application, the metric notions of helix or spiral
can be deduced from an underlying notion of 1-cocycle or a modification of it.

For example, denoting R* := R\ {0} and

(i) t € R + T, the translation action of the additive group R on an increment process (l’(svtﬂ,
indexed by the family of intervals of the form (r,s] C R,

Ttx(r,s] = T(rgt, 541

(ii) M: (y,z) € R" xR — M x := y-z € R the multiplication action of the multiplicative group
R* on R (considered now as the state space of the process (z(,4)), we see that, for each
a€R,t e Rk e € R*is a parametrization of R*. So the group representations (7'.) and
(M) are examples respectively of the kinematical and state space symmetries discussed
in Section 3 of [9].

With these notations, the spiral condition (@) is implied by the algebraic condition

Tyt (e, ) = Meor, 1) 7= €70 21, ) 7= € (20,0, = T0,t,))- (6.2)

Now notice that (@) can be equivalently written in the form

T;t‘r(tl,tﬂ = Tt(x(o,tQ] - $(07t1]) = Lt ytg+t] — L(tyty+t] = Meafx(tl,tg]- (6.3)

Therefore, putting ¢; = 0 and using xy = 0, (@) and (@) imply that (@) can be equivalently
written in the form

Ttx(o,tQ] = Me“t(x(o,tert] - x(O,t]) (6.4)

which, for o = 0 expresses the fact that the map ¢ = z(, is a 1-(T")-cocycle. In this sense
we say that the metric condition (f.1) can be deduced from the natural modification of the
algebraic notion of 1-cocycle given by (6.4). It is likely that this deduction can be extended to
more general groups.

Additional notes on the historical development of the subject can be found in [@], [@] and in
the more recent [@]

Another example of non—trivial implications for my research of an input received by Partha in
1983 is also related to factorizable structures, but this time the input concerns a very technical
result. Among the many things Partha taught me about factorizable structures in my 1983 stay
in Delhi, one remained in a corner of my mind for several years. Namely, when explaining to me
the proof of the totality of the exponential vectors in the boson Fock space, he told me that, while
it is easy to prove that exponential vectors with test functions restricted to step—functions are
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total, there was a non—trivial result, proved in the unpublished thesis of the French mathematician
Delorme, according to which, to prove totality it is sufficient to further restrict the test functions
to finite sums of characteristic functions of disjoint intervals (see [@], in fact Partha mentioned to
me Delorme’s thesis, but I was not able to find a reference for it).

As T already said, my main concern in that period was to learn QSC and to make some progress
in the proof of the quantum Lévy martingale characterization of BM, so I had no much time to
devote to other issues. Nevertheless, I made some unsuccessful attempts to prove this result by
myself and I arrived to the conclusion that the result was indeed non—trivial. Some years later
KRP and Sunder [m} published a proof of this result, but still rather complicated. Eventuall
Michael Skeide, using some ideas of Arveson, was able to produce a short proof of this result [@T

In the early 2000s, I was studying with S. Kozyrev the quantum theory of interacting particle

systems and some difficulties with the infinite volume limit lead us to consider the following
question: It is known, and intuitively obvious, that a stochastic differential equation contains more
information than the semigroup equation deduced by it. Can one quantify how much more is
this information? The question applies both to classical and quantum SDE. I don’t now why
but, thinking about this problem, the idea came to my mind that Delorme’s result, that Partha
described to me about twenty years earlier, could be of help in this issue. In fact it turned out to
be the essential technical tool for the proof that a stochastic flow (i.e. the solution of a, classical or
quantum, SDE) is equivalent to four semigroups (the 4-semigroup theorem). I reported this result
at the conference in honour of Prof. Kalyan B. Sinha held at the ISI in Kolkata (20—23 December
2003) and still remember Partha’s reaction because this has been the only time in my life in which
he explicitly told me that he liked a result I had obtained.
Between the last decades of 20th century and the first decades of the 21th, probability theory
has undergone a revolution that can only be compared to what happened in geometry starting
from the beginning of 1800. In this revolution, the role of KRP has been outstanding. Those
who had the privilege of having scientific interactions with him will remember him with gratitude
and admiration. Those who had not, can rest assured that their scientific personality will grow
enormously through meditation on his writings several of which can already be considered classics
of contemporary mathematics.
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I became aware of KRP’s work in the late 1960’s from his two papers: “On the derivation
of the Schrodinger equation in a Riemannian manifold” [20], and “Projective unitary, antiunitary
representations of locally compact groups” [] when I was a student in the U.S.A. completing my
PhD thesis work on Mathematical theory of Quantum Fields. These two, written while KRP was
working in the U.K., alerted me to his style of writing and thinking. They were both related to
the mathematical concepts of Quantum Mechanics - the first one establishes Schrédinger equation
in Riemannian manifold, while the second one about the consequences of Wigner’s theorem in
Quantum Mechanics to representation theory of locally compact groups, which often appear as
groups of symmetry of a quantum system. At this stage, KRP seemed to be interested in the
structural aspects of the foundations of Quantum Theory and not so much the details of the
solutions of the Schrodinger equation or of the (unbounded) generators of the various symmetry
groups involved, which gives possibilities of describing different physical models and details of the
Schrédinger evolutions.

KRP, as his early training and background shows, is first and foremost a probabilist with a
wide perception of the subject. However, in the mid 1960’s, in ISI Kolkata, the lectures of V S
Varadarajan on the structures (in algebro-geometric settings rather than probabilistic) of Quantum
theory had a deep influence on him. Later in his professional life, the synthesis of Probability theory
and concepts of Quantum Mechanics seemed to have played a bigger role.

At some point in the late 1970’s after his return to India from the UK, KRP developed interest
in the theory of perturbation of linear operators in an infinite dimensional Hilbert space and gave
a lecture course in the Bangalore campus of TIFR, mostly based on the work of T. Kato on the
subject. This first change of direction in his mathematical attention led to two papers: the first
on the eigenvalues of analytic matrix-valued maps [@] and the second on the exact bound of the
Coulomb potential with respect to the free Dirac operator [22]. These researches possibly grew
out of his lecture course on perturbation theory earlier.

It may be important to emphasize that during this decade of the 70’s, KRP’s research were in
various areas of mathematics of the Quantum theory. Some of these were directly related, some not
so much, to Probability theory, e.g. on positive definite functions, infinitely divisible distributions,
current algebras, etc. These will be written about in this collection elsewhere. Here it is mentioned
to bring forth a feeling of the breadth of the mathematical canvas of KRP and also to prepare for
the next level of major research activity that erupts in this canvas of KRP.

The next major direction of KRP’s research possibly begins with his work with R. L. Hudson
and P. D. F. Ion in “The Feynman-Kac Formula for Boson Wiener Processes” [H], and in which
probably the first attempt to model Wiener process as processes associated with Bosonic Field
was made. It must be mentioned that approximately around this time (1980-), in the UK, R. L.
Hudson and R. F. Streater along with their collaborators, had already started related mathematical
constructions, Hudson in the CCR Fock space over L?(RR,) and Streater in the CAR-Fock space
(e.g. [@]) Having completed a PhD thesis work on the representation of the CCR (with infinite
degrees of freedom) and mathematical theory of quantum fields, I went to University of Geneva and
switched fields completely to the mathematical theory of scattering in the Quantum Mechanics (of
finite degrees of freedom). The major developments in the Quantum Field Theory (QFT) in the
1950’s and 60’s were very exciting, but in my views, did not go far into solving physically important
problems. The real reason in my view is that may be it was very difficult and demanding. On the
other hand, the mathematics needed for a wide range of physical problems with finite degrees of
freedom were either already developed or were emerging rapidly. Thus I had spent the whole of
the decade of 1970, working in this area of quantum theory, ending with writing the first book on
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Mathematical Theory of Scattering, with Jauch and Amrein in Geneva. However the subject of
the theory of Quantum Fields remained alive, though in the back of my mind. It is possible that
listening to the lectures (mostly of KRP) in the ISI Delhi centre on this newly emerging subject of
Quantum Stochastic Calculus at first ignited my interest - may be this will provide an interesting
approach to some of the unsolved problems of QFT. But as it turned out, that’s not to be; rather
the new theory of Quantum Stochastic Processes, probably did more to model the dissipative
processes in quantum theory than for the QF T, aside from expanding the mathematical horizon to
bring in different theories of probability, some of which do not satisfy the axioms of Kolmogorov for
the classical probability theory. Having had a background in the theory of unbounded operators
in a Hilbert space and after learning some probability theory from KRP’s lectures, I was ready to
venture into a marriage of Stochastics and Quantum theory.

The initial thrust of Hudson and KRP seemed to be in the direction of a kind of “multiplicative
and non-commutative integral” (e.g. with Hudson and Ion [8] and the earlier references) as infinite
product of “unitary infinitesimals” driven by the “increments of the creation and annihilation oper-
ators” in a Fock space. Formally this made good sense but computations are very awkward in this
formulation and hence good results were hard to come by. In the same period, KRP and I started
looking at a Trotter-Kato product of evolutions with unbounded operator-coefficients driven by
classical Brownian motion @] and we could show that having a limit of these random products is
the same as having solutions of classical stochastic differential equations with operator coefficients
in a Hilbert space. These were constructive evolutions, constructed out of the independent incre-
ments of classical Brownian process. Further generalisations of this idea were carried out by J.
M. Lindsay and this author [@ |driven by all the three basic quantum martingales with bounded
operator coefficients and by D. Goswami, B. Das, and this author [§] on quantum stochastic flows
on *-algebras with unbounded coefficients. In 1981-82, one of the two important ingredients, viz.
stochastic differential equations to replace “infinite product integrals” has lodged itself in the
minds of Hudson and Parthasarathy. The second, viz. that of continuous tensor product, possibly
came from his much earlier work on “infinitely divisible distributions” and his collaborations with
K. Schmidt [@] These led Hudson and KRP to realise that the Fock space representation of the
Weyl-Segal commutation relation (often used by physicists) on L*(IR, ) provides an ideal setup to
implement the continuous tensor product structure. Another way of expressing this would be to
say that the “exponential functoriality” of the map

I':h>H + Fock ( over H),

(this is called the “second quantisation” by the physicists) stating that I'(h; @ hy) is unitarily
equivalent to I'(h;) ® ['(hy), where h; € J;, j = 1,2, weaves neatly into the factorisation

P(LAR,)) = T(L([0,s]) & L*([s,t]) & L*([t, 00)))
I (L2([0,s])) @ T (L3([s,t])) ® ' (L? ([t,00))) for 0 < s < ¢ < o00.

Formally speaking this can accommodate a “product integral” as “infinitesimal factorised product”
in
I(L*(R,)) = T(L2([0,¢])) @ T(L2([t,t + 0t])) ® I' (L ([t + dt, 00))) ,

leading to writing of an integral with respect to a stochastic (yet possibly by non-commutating or
quantum) “integrator”. The first factor would represent the “past”, the last the “future”, while the
infinitesimal operator-integrator (the second factor) commutes with “what is in the past space”,
though the final integrated solution may not be commutating.
The stage is now set for the emergence of the seminal paper of Hudson and Parthasarathy [@]
giving:
(i) mathematically satisfactory structure in Bosonic Fock space I'(L*(R.)) of operator valued
processes,

(ii) the operator-integrators (operator-martingales),
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(iii) a theory of integration in this background (somewhat in the spirit of Ito integrals), and

(iv) quantum Ito multiplication table of products of operator increments.

Though Hudson in an earlier single authored paper, did give Ito-table with only creation and
annihilation increments, this is the first time the full table with conservation process as well
appeared. Then they went on to consider quantum stochastic differential equation (gsde) with
bounded operator coefficients and the conditions under which the solution will be an unitary
operator valued process in h ® L%(R ), where h is the space in which the quantum physical system
is described.

This paper also observed a remarkable feature of the theory - viz. in the same structure, both
classical processes - Brownian motion and Poisson process - are mathematically describable which
is impossible in the classical theory of stochastic process. This impossibility is due to the fact
that the g-algebra constructed out of the increments of Brownian motion and that of the Poisson
process are incompatible: “In a world of knowledge made up of experiments on the Brownian
motion, one cannot answer questions on the Poisson process”. But this is the magic of quantum
theory - in a sense, one can create a large algebra (in this case B(I'(L?(R.))), the *-algebra of
bounded linear operators on Fock space) which contains as commutative sub-*-algebras, both the
Brownian motion and the Poisson algebras. In fact, B(I'(L*(R,))) is generated by these two
commutative (but mutually non-commutative) sub-algebras.

Possibly for sometimes in 1985 onwards, KRP started regular courses on this newly emerging
subject which was regularly attended by me and a few graduate students. There was of course the
KRP-hallmark in each of his lectures - the clarity of statements and proofs, even the depth of casual
remarks and above all, the masterly organisation of material. These lectures metamorphosed to
first ISI lecture notes and then to his famed monograph “An introduction to Quantum Stochastic
Calculus”, Birkhauser, 1992 [@]

This book also contains some of other very interesting observations of Hudson and KRP - viz.
that the Fermionic process {F(t)},~, can be realised in the Bosonic Fock space as a quantum
stochastic integral (with respect to the Bosonic operator-integrators) satisfying the canonical anti-
commutator relation (CAR);

= F(t)F(s)+ F(s)F(t) =0,

{F(t),F(s)
*} = min{t, s}, 0<s,t<oo.

{F(t), F(s)

The book describes in details the construction of the processes, driven by a countable-infinite mem-
ber of mutually independent basic quantum process, i.e. creation, annihilation, and conservation
process, originally by Mohari and the present author (another presentation appears in the book
[@]) This later book by the very well known classical probabilist Paul-André Meyer gave, in
part a classical probabilist’s point of view to the new subject at that time and introduced the
concept of a toy Fock space, which often turned out to be quite useful in understanding the basic
probabilistic ideas. Furthermore, the central ideas behind the construction of quantum stochastic
evolutions via a family of x-homomorphic flows on a x-algebra of observables are also studied in
both these books. This is constructed by a conjugation by unitary solutions of appropriate gsde’s
just as one computes the Heisenberg evolution from the unitary Schrodinger operators [[L1]. Some
of the central theme of these topics appeared slightly earlier in the paper by L. A. Accardi, A.
Frigerio, and J. T. Lewis [@] These evolutions have more recently been called quantum diffusions
or quantum flows.

During the period of 1985-1992 before these books made their appearance and created an
impact in the domains of quantum theory and of probability, KRP had a flurry of academic
activities in many different directions, with the central theme of quantum stochastic processes, of
which I'll mention a few. The first of these on “The passage from random walk to diffusion in
quantum probability” [@], in which he continued successfully his efforts to model quantum flows on
a x-sub-algebra of B(H') by approximating the stochastic (noise)-part by countably infinite tensor

}
}
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products of B(C?)-pieces. Each step of the random walk produces a B(C?)-element associated
with the interval (jh,j+ 1h) as a new tensor element. With bounded operator coefficients, it
was demonstrated that the quantum random walk (suitably scaled with respect to h, the walk-
length) converges strongly to a quantum stochastic diffusion in B(F), obtained by conjugation
by the unique unitary solutions of a stochastic Hudson-Parthasarathy (H-P) equation. Some
improvements on these results were noted in the Article of this author “Quantum random walk
revisited”[Bg].

The concept and use of the (random) stop times (in relation to a stochastic process) is a
beautiful and powerful tool in the hands of classical probabilists. Hudson had already started an
investigation into the possibility of incorporating this concept into the realm of quantum probability
as an adapted family of spectral measures in Fock spaces I'(L?(R. )). KRP and the present author
(BY], [B2]) undertook a systematic analysis of this in the Fock space calculus, defined the random
stopped-past and -future Fock spaces, and proved that for each stop-time operator S (unbounded
non-negative self-adjoint operator in Fock space), the strong Markov property holds, i.e.

I'(L*(R,)) = Fock space for S-stopped past ® Fock space for S-stopped future.

This work led to further researches into interesting questions on the anomalies in the consequential
definitions of random stopped past- and future- quantum observables (algebras) ([@],[H}).There are
still many unanswered questions in this sub-area.

Slightly earlier there was the fundamental work of KRP with the present author on integral
representation of martingales [@], emulating the famous representation theory of square integrable
martingales of Kunita and Watanabe. Hudson and Lindsay had also looked at this problem, in
a limited context, in [] The 1987 paper mentioned above, introduces a concept of bounded
regular martingales and proves that a quantum martingale in Fock space satisfies a H-P gsde with
bounded operator coefficients if and only if it is bounded regular. This led to many interesting
consequences, e.g. a note on “A martingale of bounded operators that is not representable as a
stochastic integral”, by J.-L. Journé. and P.-A. Meyer, in [@] and a rejoinder by KRP on the note
in the same volume [Q] The bounded regularity is too strong a constraint and some progress
was made by going over to white noise theory (or looking at second quantisation over a somewhat
restricted class of functions in constructing the Fock-like space (but not Fock), see e.g. the article
by Un Cig Ji and this author in [@]

A mention needs to be made of several significant papers in this period: “A martingale char-
acterization of canonical commutation and anticommutation relations,” ([2]), “Azéma martingales
and quantum stochastic calculus”, in [@], and “Cohomology of power sets with applications in
quantum probability” in [@] The first of the above (with Accardi) emulates classical work of Lévy
in characterising the Brownian motion from the property of it being a martingale and having a
characteristic quadratic variation to that of the CCR and CAR in Fock space by their respective
properties. The second of the three relates to a very special classical martingale (studied by Azéma)
made out of the signature of the Brownian motion and its last zero before time ¢ (it is a process
without continuous trajectories). Following up on a suggestion of P.-A. Mayer, KRP showed that
the Azéma martingale is one of a class of commutative quantum martingales satisfying a linear
gsde. This allowed the use of considerable amount of resources of the development of the quantum
stochastic calculus to the problem to study the properties of the whole class, parameterised by a
real parameter ¢ € [—1,1]. This article is one of the many instances of writing by KRP which
displays beautifully his mastery of the classical and quantum probability theories. He uses the
Fock space quantum stochastic calculus, Maassen’s kernel calculus in Guichardet Fock space and
the classical Ito calculus of standard Brownian motion in an interwoven fashion to prove a large
number of interesting results. For example, for each ¢ € [—1,1], the solution X_(¢) is a family
of commutative self-adjoint processes, of which all but X (¢) are bounded operator families and
furthermore he shows that while X (¢) is the classical Brownian motion, X ;(¢) is closely related
to the Fermionic process, and the process (2t)_%X0(t) has the density function closely related to
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the arc-sine law. Thus this article establishes one kind of continuous interpolation among various
quantum stochastic processes.

Another article by KRP and this author [] addressed one fundamental issue in the subject,
taking a quantum stochastic flow j, : A = A Q B(I'(L*(R,))) where A C B(h) with h being the
initial Hilbert space of the observed system, does the family {j,(x) : a € A;t > 0} constitute a
commutative sub-algebra, if A is a commutative x-algebra to start with. Equivalently, one can ask
if the initial observable set are all ‘classical’, does the flow remains ‘classical’? In the said paper,
the authors showed that if the map coefficients driving the flow j\t() map A boundedly into A,
then the answer is yes. This structure accommodates a large class of classical Markov processes
on a measurable set, and this aspect of the theory does need further exploration, which somehow
has not happened.

The theme of unification of various noises (classical, Bosonic, and Fermionic) engaged KRP in
his article in [25], and was also extended (with this author, [B4]) where the free noise (coming from
free commutation relations) also could be accommodated, however at the cost of the need to use
non-adapted integration theory, or more precisely, the integration of the future-adapted integrands.

The structure of the generator of uniformly continuous dynamical semigroups, described by
Lindblad, and later by Christensen and Evans in von Neumann algebras led KRP to two important
articles. The first (with the present author: [@]) achieves the quantum stochastic dilation of the
said semigroup with CE-parameters by

(i) constructing a compensated Poisson process in the Fock space by using the CP-map in the
CE-parameters and then,

(ii) perturbing this process by a suitable unitary-cocycle to reach the stochastic dilation.

The second paper (with J. M. Lindsay, [@]) investigates the properties of CP-map-valued, uni-
formly contractive, though not necessarily *-homomorphic, stochastic flows on a von Neumann
algebra, and also constructs a class of such flows for a given set of CE-parameters.

There were a few other areas of chaotic/stochastic motions in non-commutative sets, in which
KRP made important contributions in collaboration with R. L. Hudson and others, e.g. [] about
which very little will be said here. Another important area that will be dealt with elsewhere in
this volume is, his work with B. V. R. Bhat in constructing general quantum Markov process,
not necessarily described by gsde’s and his later systematic studies on finite dimensional quantum
Gaussian distribution. And there will remain unsaid, unwritten areas/ideas of discussions that I
have had the privilege of having with him (e.g. relations between non-commutative probability
and non-commutative geometry) which shall have to wait for future to see their unfolding.
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8.1 INTRODUCTION

The goal here is to provide an overview of articles by K. R. Parthasarathy on two specific somewhat
unrelated areas mentioned in the title. The papers on ‘Weak Markov Flows’ is limited to the decade
1990-1999, and is about a quantum analogue of classical Markov processes. The second topic
‘Extreme points of Convex sets’ is a lifelong favorite of Parthasarathy and the papers are spread over
several decades and it includes problems and ideas from both classical and quantum probability.
Typically the tools come from elementary linear algebra and the final answers are simple and
elegant. For the convenience of reader we include the references of papers of Parthasarathy in the
main text itself.

8.2 WEAK MARKOV FLows

After the discovery of quantum Ito formula by Hudson and Parthasarathy in 1980’s, the subject of
Quantum Stochastic Calculus came into existence and quickly it became an area of hectic research
activity. Apart from the founders several prominent names such as L. Accardi, V. Belavkin, F.
Fagnola, A. Holevo, Un Cig Ji, J. M. Lindsay, K. B. Sinha, W. Waldenfels, and their collaborators
and students also got engaged in developing this theory.

One of the early achievements of this theory was to describe a beautiful class of QSDE’s
with unitary processes as solutions. When their defining coefficients satisfy some structure equa-
tions, conjugation by these unitary processes solve the dilation problem for quantum dynamical
semigroups in the bounded generator case. Here we elaborate a bit on this problem. One param-
eter semigroups of unital completely positive maps on C*-algebras are the quantum analogues of
semigroups of stochastic maps describing probabilities of Markov transitions in classical Markov
process theory. They are known as Quantum Markov semigroups. They are used to model open
systems or irreversible systems in quantum theory. Can we write them as expectation semigroups
of ‘quantum Markov processes’ in some sense is the question. Now if the quantum Markov semi-
group has a bounded generator then we can explicitly write down quantum stochastic differential
equations and as mentioned above Hudson-Parthasarathy theory provides conjugations by unitary
processes as solutions. In other words the theory is quite satisfactory in the bounded generator
case. However, keeping interesting examples in mind, it is important to consider quantum Markov
semigroups with unbounded generators. As demonstrated by Fagnola, Sinha and others, extend-
ing the Hudson-Parthasarathy theory to include such unbounded generators has been successful
in some special cases with stringent domain conditions on the generator. However, the method is
very analytic in nature and so it has its limitations.

On the other hand, in classical probability theory, thanks to Kolmogorov’s existence theorem
there is a Markov process arising from every Markov semigroup of stochastic maps. This raised the
question as to whether we can have an analogous theory of constructing a suitable Markov process
for quantum dynamical semigroups without dealing with the generator. This is what the theory of
‘Weak Markov Flows’ accomplishes. Now let us look at the papers of K. R. Parthasarathy in this
area.

1. K. R.Parthasarathy, A continuous time version of Stinespring’s theorem, Quantum Proba-
bility and Applications -V, Lecture Notes in Mathematics 1442 (1990) 296-300.

Every unital completely positive (CP) map dilates to a unital *-homomorphism and this is
known as Stinespring’s theorem. Construction of a Markov process, starting with a quantum
Markov semigroup required stitching together Stinespring dilations of individual completely
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positive maps of the semigroup. An early attempt in this direction can be seen in this paper.
However, there is no explicit mention of quantum Markov processes in this article.

2. B.V.Rajarama Bhat and K. R. Parthasarathy, Markov dilations of nonconservative quantum
dynamical semigroups and a quantum boundary theory, Annales de I'l.LH.P. Probabilités et
statistiques, 31(1995) no. 4, pp. 601-651.

This article was the main content of the author’s Ph.D. thesis, written under the supervision
of K. R. Parthasarathy. Here for the first time, the notion of ‘Weak Markov Flows’ has been
defined and studied. In this article unital semigroups are called conservative, and contractive
completely positive semigroups, which are not necessarily unital are called nonconservative
semigroups. This is a terminology inspired from classical stochastic processes, and is not so
common in recent papers.

Let H be a complex separable Hilbert space and let A C B(H ) be a von Neumann
algebra (for some of the constructions C*-algebras also will do). Consider a non-conservative
one parameter semigroup of completely positive maps (quantum dynamical semigroup) on
A:

T = {Tt it >0}

The basic construction in this paper, allows us to construct a triple (¥, F, j), where:

(a) J is a Hilbert space containing J, as a subspace and is called the dilation space. It is
like the measure space constructed in the Kolmogorov construction of Markov processes;

(b) F = {F,:t> 0} isan increasing family of projections on #', where F'(0) is the projection
onto H,. This family provides the analogue of filtration of classical theory. The von
Neumann algebra {F(t)XF(t) : X € B(H)} is like the algebra of bounded functions
measurable with respect to the o-field at time ¢. The maps E, : B(H) — B(H ) defined
by

E(X)=F({t)XF(t), X € B(H)

are the associated conditional expectation maps.

(¢) j={Jj;:t >0} is a family of (not necessarily unital) *-homomorphisms, j, : A — B(H)
satisfying (i) Eo(jo(X)) = XF(0), jo(X)F(t) = B@)(j,(X)), X € A; (i) E,(,(X)) =
Js(T_ (X)) F,, X € A,0<s<t< oo. For obvious reasons the property (i) is called
adaptedness and (ii) is called Markov property.

The triple (', F, j,) is called a weak Markov flow with T as its expectation semigroup. Under
certain natural minimality conditions, up to unitary equivalence, there exists a unique weak
Markov flow (', F, j) associated with any non-conservative quantum dynamical semigroup.

The naturalness and the power of this construction has been demonstrated in the article by
developing a quantum version of Feller’s boundary theory for nonconservative semigroups.

3. B.V.Rajarama Bhat and K. R. Parthasarathy, Kolmogorov’s existence theorem for Markov
processes in C* algebras, Proc. Indian Acad. Sci. (Math. Sci.), 104(1), (1994) pp. 253-262.

This extends the basic construction of the previous article, where now instead of semigroups
we have a family of contractive completely positive maps, {T,, : 0 < s < t} on a von
Neumann algebra A, satisfying T,., = T , T, ; for 0 < r < s < t. Now we quote from the
abstract of the article: Given a family of transition probability functions between measure
spaces and an initial distribution Kolmogorov’s existence theorem associates a unique Markov
process on the product space. Here a canonical non-commutative analogue of this result
is established for families of completely positive maps between C* algebras satisfying the
Chapman-Kolmogorov equations. This could be the starting point for a theory of quantum
Markov processes.

A 426e



8. Weak Markov Flows and Extreme Points of Convex Sets

4. K.R.Parthasarathy and K. B. Sinha, Quantum Markov processes with a Christensen-Evans
generator in a von Neumann algebra, Bull. London. Math. Soc., 31(5), (1999) 616-626.

Suppose a unital quantum dynamical semigroup 7' = {7} : t > 0} on a von Neumann algebra
has a bounded generator. Then thanks to Christensen and Evans [[f], we know the structure
of the generator. Now it is a natural problem as to whether we can construct a weak Markov
flow concretely using the generator alone instead of the abstract algebraic approach described
in [2] and [3] above, which need the knowledge of the semigroup. This article answers this
affirmatively. The construction is quite involved and is inspired by compound Poisson process
of classical stochastic process theory.

5. K. R.Parthasarathy and V.S.Sunder, Exponentials of indicator functions are total in the
Boson Fock space, I'(L?[0, 1]).

This article proves a beautiful technical result on exponential vectors in Fock spaces. It was
established by the authors in 1980’s when Sunder was a faculty member in Indian Statistical
Institute, Delhi. However, the result remained unpublished until some use for it was found
in [4] to prove minimality of certain weak Markov flows. This is the connection of this article
with the theory of weak Markov flows. The proof is measure theoretic and uses tools such as
martingale convergence theorem. An indirect proof can be found in [f]. Now much simpler
direct proofs are available [[L0]. The result has found interesting applications in the study of
cocycles on Boson Fock spaces ( [[I] and [0]).

In due course, the theory of weak Markov flows was used to obtain dilation of quantum
Markov semigroups to Ej-semigroups (semigroups of unital endomorphisms) making the
theory more useful in Operator Algebra theory [Ef

8.3 EXTREME POINTS OF CONVEX SETS

The well-known Krein-Milman theorem tells us that any compact convex subset of a Hausdorff
locally convex topological vector space is the closed convex hull of its extreme points. This makes it
important to determine the set of extreme points of naturally occurring convex sets. It is seen that
often the set of extreme points has a nice description with various symmetry properties. However,
in some situations there may not be any explicit description of extreme points and we may have
to be satisfied with some abstract characterizations.

Here we look at contributions of K. R. Parthasarathy in this circle of ideas. He has considered
various convex sets of primary interest in quantum theory. One of the recurring themes, is to
look at coupled systems with fixed marginals. To begin with we see some papers which deal with
elementary classical probability.

1. K. R.Parthasarathy, On extremal correlations, C R Rao 80th birthday felicitation volume,
Journal of Statistical Planning and Inference, 103(2002) 173-180.

By definition a correlation matrix of order n is an n x n positive semi-definite matrix whose
diagonal entries are equal to 1. They are correlation matrices of random variables with unit
variance. Clearly the set F,, of all correlation matrices of order n forms a convex compact
set in the space of all n x n (real or complex) matrices. Determining its set of extreme points
seems to be a hard problem. Earlier it was shown by Grone et al [@] that if A is an extreme
point of E,, then k := rank (A), satisfies

k(k+1) < 2n.

Parthasarathy completely characterizes the set of extreme correlation matrices of rank k, as
matrices having some special block decompositions. The result of Grone et al., is a simple
corollary of this characterization. Some remarks connecting this result to Bell inequalities of
quantum theory can also be found in this article.
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2. K. R. Parthasarathy, A Remark on Spin Correlations, Sankhya: The Indian Journal of Statis-
tics, Series A (1961-2002), 51(2), (1989), pp. 192-195.

In quantum theory, self-adjoint operators are the quantum random variables and are known
as observables. On any measurement, the values taken by observables are points in the
spectrum. Spin observables are those which take only {+1,—1} as their values. In other
words, they are both self-adjoint and unitary.

Given a non-empty set X, a function K : X x X — C, is said to be a positive kernel if for
any finite subset {z,,z,, ..., 2, } of X, the matrix:

(K (z;, 33;')]19‘,3‘@

is positive semi-definite. Observe that if K(z,x) = 1 for every & € X, then these matrices
are correlation matrices.

Consider a positive kernel K on a set X, such that K(x,z) = 1 for all z. It is shown that
there exists a Hilbert space  with a unit vector €, a family {U,, x € X} of unitary operators
and a spin observable S, such that on considering spin observables S, = U, *SU,, z € X,

<Qa S;cQ> = 0;

(Q,5,5,0) = K(v,y), Vr,y€ X,

In other words, any preassigned correlation structure can be achieved by a family of spin
observables, which are all unitarily equivalent to each other.

3. K. Balasubramanian; J. C. Gupta and K. R. Parthasarathy, Remarks on Bell’s inequality for
spin correlations, Sankhya, Ser. A 60(1), (1998), 29-35.

A random variable £ is said to be a spin variable if the only values taken by it are {+1,—1}.
This is the classical probability analogue of spin observables introduced before. In the current
article, only ‘symmetric’ spin variables, i.e., those satisfying P({ = +1) = P({ = —1) = %
are considered.

If {§ : 1 < i< n}isa family of symmetric spin variables. Clearly they have expectation
E(&;) equal to zero. Consider the correlation matrix ¥ = [0,,],,.,, defined by

0,; = E(&¢;), 1<i,j<n.

Note that o;,; = 1 as P((? = 1) = 1. Now the famous, Bell’s inequalities ([@] ) can be
expressed in the form

1+ €60+ €€,05 + €605, =0, V1<i<j<k<mn,

where €;,€,, ..., €, are +1.

It is not hard to construct real correlation matrices which violate Bell’s inequalities. In
other words, there are correlation matrices which can’t be realized as correlation matrices of
classical symmetric spin random variables. In the present article it is shown that for n < 4,
Bell’s inequalities are also sufficient to ensure that the given correlation matrix ¥ is the
covariance matrix of a set of symmetric spin random variables. However, for n > 5, this is
not the case.

Interestingly, a correlation matrix ¥ where all off-diagonal entries are equal (say, 0,; = 0, i #
J, is the correlation matrix of a family of symmetric spin random variables iff 1 > o > —ﬁ
ifnisevenand 1 > o > —% if n is odd.

In the quantum setting Bell’s inequalities can be violated by spin observables. In fact it is
shown that any correlation matrix can be realized as correlation matrix of spin observables.
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4. K.R.Parthasarathy, Extreme Points of the Convex Set of Joint Probability Distributions
with Fixed Marginals, Proc. Indian Acad. Sci. (Math. Sci.) 117(4), (2007) 505-515.

From the title of this article the convex set under consideration is clear. The surprise is in
the proof technique. The article uses Stinespring’s theorem, which characterizes completely
positive maps on C*-algebras. Applying this theorem to commutative algebras various char-
acterizations are obtained for extreme points of the joint distributions with fixed marginals.
As a special case, a new proof of the classical Birkhoff- Von Neumann theorem identifying
extreme points of the set of doubly stochastic matrices as permutation matrices has been ob-
tained. The following open problem has been mentioned: Characterize the possible support
sets of extreme joint distributions in terms of the given marginal distributions.

5. K. R. Parthasarathy, Comparison of completely positive maps on a C*-algebra and a Lebesgue
decomposition theorem, In Athens Conference on Applied Probability and Time Series Anal-
ysis, Lecture Notes in Statistics -114 (1996), 34-54.

The convex set of completely positive maps dominated by a given completely positive map can

be described using positive contractions in the commutant of the range of the *-homomorphism
of Stinespring’s representation (W. Arveson [@} had observed this). The positive contraction

which gives the dominated map can be considered as an analogue of Radon-Nikodym deriva-
tive. In the article we see a quantum version of the result from classical probability that the

Radon-Nikodym derivatives of a measure ) dominated by a measure P, on an increasing

filtration of sub-o-fields forms a convergent martingale with respect to P. Further, a quan-
tum analogue of Lebesgue decomposition theorem for two completely positive maps has been

obtained.

6. K. R.Parthasarathy, Extreme Points of the Convex set of Stochastic Maps on a C*-Algebra,
Infinite Dimensional Analysis, Quantum Probability and Related Topics, 1(4) (1998), pp.
599-609.

This article characterizes the set of extreme points of the convex set of unital completely
positive maps on a C*-algebra. The main tool is the Stinespring’s representation theorem.
In case of maps on full matrix algebras, the extreme points can be characterized using
the corresponding Choi-Kraus coefficients. The result with suitable modifications can be
extended to unital quantum channels.

7. K. R. Parthasarathy, Extremal decision rules in quantum hypothesis setting, Infinite Dimen-
sional Analysis, Quantum Probability and Related Topics, Vol. 02, No. 04, pp. 557-568
(1999),

It is assumed that a quantum system can be in any of the n, known states (density matrices)
{p1; P2y - pn}- The problem is to determine as to which is the right state. This requires a
‘decision rule’, which basically means choosing a positive operator valued measure (POVM)
on {1,2,...,n} taking values in the cone of positive operators on a finite dimensional Hilbert
space H:

(X1, Xp, 0, X))+ X; € B(H), X; > 0,95, X; =1}

J

Clearly the set of POVMs is a compact convex set. In fact, this collection is in a natural
one to one correspondence with the set of unital CP maps on the commutative algebra of
continuous functions on {1, 2, ..., n} with values in B(H). Consequently the extreme points of
the set of decision rules can be determined using the results of previous paper. The optimal
decision rules are those which minimize a given cost functional and Holevo had certain
equations characterizing them. In this article Holevo’s equations for an optimal decision are
derived through elementary means and a simple example is given in order to illustrate the
non-uniqueness of optimal decision rules.
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8.

K. R. Parthasarathy, Extremal quantum states in coupled systems, Ann. 1. H. Poincaré, PR
41 (2005) 257-268.

The problem here is very similar to the problem discussed above of joint measures with given
marginals. Let J{,, {4 be finite dimensional complex Hilbert spaces describing the states
of two finite level quantum systems. Suppose p, is a state in #;,7 = 1,2. Consider the
convex set of all states in ' = J(; ® H{5 whose marginal states in /; and 7, are p; and
po respectively. The article provides a necessary and sufficient criterion for an element in
this set to be an extreme point. Such a condition implies, in particular, that for a state p to
be an extreme point, it is necessary that the rank of p does not exceed (d? + d2 — 1)% where
d; =dim H,,i=1,2.

Further when ', and J, coincide with the 1-qubit Hilbert space C? with its standard
orthonormal basis {|0), |1)} and marginal states p;, p, are given by p; = py = é, it turns out
that a state is extremal if and only if it is of the form |Q2)(Q|, where

Q = 0)[¢po) + [1)|¢h1),

with any arbitrary ortho-normal basis {|1,),]1¥;)} of C?. In particular, the extremal states
are the maximally entangled states. Using the Weyl commutation relations in the space
L,(A) of a finite Abelian group A, a mixed extremal state with marginals 11, 1, > has
been obtained for n > 2. This paper has garnered a large number of citations, showing the
interest in this sort of problems in quantum information theory community.
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tribute this article. Professor K.R.Parthasarathy (KRP) was my Ph.D. supervisor and it is im-
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9. K. R. Parthasarathy’s Contributions to Quantum Gaussian
Distributions and Applications

Franco Fagnola
Dipartimento di Matematica, Politecnico di Milano, 20133 Milan, Italy
Email: franco.fagnola@polimi.it

In the “short pedagogical essay” @]7 published in 2010, K. R. Parthasarathy illustrated the
notion of a quantum Gaussian state as a natural extension of the idea of Gaussian or normal
distribution in classical probability. This presentation led to some interesting open problems on
symmetry transformation and other properties of quantum Gaussian states, calling for further
investigation which he continued in the following years.

This was just one, perhaps the last, topic he had considered in his long and productive life:
Gaussian stochastic analysis within Quantum Probability. In the last decade, despite declining
health, he continued his studies in this field along the lines that I will try to summarize later.
However, 1 cannot resist saying a few words about my contacts with him and his influence on my
research in Quantum Probability (QP).

I first met Partha, as his colleagues and friends familiarly called him, at the conference Quantum
Probability and Applications III (QP3) held in Oberwolfach, 25-31 January 1987. I had started to
be interested in QP after some seminars by Luigi Accardi and, having a background in the theory
of classical stochastic processes, quantum stochastic calculus seemed to me to be a very promising
and interesting development. I remember that the first words I exchanged with him concerned
the notion of stopping time in QP. At a certain point, I asked him why some mathematical
physicists present at the conference seemed skeptical about the usefulness of the notion. Briefly,
he told me that he did not care too much with the applications of his discoveries, he was doing
mathematics for fun. Today, I believe this was a distinctive feature of his mathematical research.
Throughout his life Partha constantly enjoyed solving mathematical problems, in this way he left
so many influential ideas and contributions that the community of mathematicians in general, and
quantum probabilists in particular, owe him a great debt for the legacy of his work.

Over the years, in my visits to ISI and in the recurring meetings of the Quantum Probability
conference series, I had the pleasure to follow his enjoyable brilliant talks and to discuss scientific
problems. Moreover, I’ve been amused by several post-seminar walks; “after each talk, take a walk”
was one of his favourite maxims. These discussions, his speeches, his scientific works (not only in
content, but also in the way of organizing the presentation) and, more generally, his approach to
mathematics were of such great inspiration to me that I consider him as a guru.

Returning to the thread of the discussion on Partha’s contributions to quantum gaussian dis-
tributions and applications, I will briefly describe the problems he studied in the papers listed in
the references.

In his second paper [@] he continued investigation on the structure of quantum Gaussian states
in an n-mode Fock space. First he found in a direct way the explicit canonical form of the density
as the product of an m-mode Gibbs state and an (n —m) mode vacuum state conjugated with a
unitary Weyl operator and another unitary operator implementing a Bogoliubov transformation.
Then he showed that any Gaussian state in an n-mode Fock space can be viewed as the marginal
of a pure Gaussian state on a 2n-mode Fock space. Finally he classified Gaussian symmetries,
namely unitary operators U such that, for any Gaussian state p, Up U™ is still a Gaussian state,
by proving that they are the product of a Weyl operator and another unitary implementing a
Bogoliubov transformation up to a phase factor.

In @] he first proved that every real 2n x 2n matrix admits a dilation to (roughly speaking,
can be realized as a corner of) a 2(n +m) x 2(n 4+ m) symplectic matrix, then he mentioned some
open problems on quasi-free Gaussian channels (i.e. channels that transform Gaussian states to
Gaussian states and are characterized by two matrices). This was the first of three papers in
which he tried to use the concept of dilation in the analysis of Gaussian states and quantum
Gaussian maps. I have the feeling that he wanted, on the one hand, to attack open problems on
quantum Gaussian channels by using dilation techniques, as not yet explored in the literature on the
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topic, in a framework that was familiar to him and, on the other hand, to highlight how Hudson-
Parthasarathy’s quantum stochastic calculus is a natural tool for quantum stochastic Gaussian
analysis. This aim is clear in [@] where he shows that quantum Markov (or quantum dynamical,
in the physics terminology) semigroups of quasi-free completely positive maps admit a dilation by
means of a family of unitary operators solving a quantum stochastic differential equation driven by
the fundamental noises of Hudson-Parthasarathy’s quantum stochastic calculus. These semigroups
are not strongly continuous but their predual semigroups map quantum Gaussian states to quantum
Gaussian states (see [[L0] for an account with Partha’s notation also filling some gaps in the old
mathematical physics literature). They were introduced in the seventies and their generators
were shown to be of the Gorini-Kossakowski-Sudharsan-Lindblad (GKSL) type with unbounded
operators in their representation in this form. They were recently investigated in the context of
quantum information theory in some papers where some of the open problems stated in [3] were
also considered.

His studies on Gaussian quantum channels also led him to the introduction of the non-trivial ex-
tension considered in [9]. There, using the tool of quantum characteristic functions, he constructed
new concrete semigroups with unbounded generators that are also quantum Markov semigroups,
but the form of their generators involves additional features which do not appear in the standard
GKSL form. In the wake of this analysis many open problems arise naturally which are still waiting
to be investigated.

Always taking inspiration from the relationship with classical probability, of which he was as
well a master, Partha also studied other properties of quantum Gaussian states which had not been
considered with due attention before such as exchangeability. However, he was also concerned with
a typical concept regarding quantum states, namely entanglement that has no classical counterpart
since all classical states are not entangled (and they are called separable). In the paper [H], in
collaboration with Ritabrata Sengupta, a characterization of exchangeability of a chain of quantum
Gaussian states, with a stationarity property, was given in terms of their covariance matrices.
Developing this analysis, examples of entangled stationary states were also given. In the paper [@],
in collaboration with Rajarama Bhat and Ritabrata Sengupta, the relationship between notions of
extendability and separability was investigated extending and completing previous results in the
mathematical-physics literature. The classical probabilistic viewpoint, always present, emerges
also in his work [8] where various relative entropies of two n-mode quantum Gaussian states are
computed and shown to be equal to the sum of a classical part (relative entropies of classical
Gaussian distributions) and another term which is due to non-commutativity.

In all investigation on n-mode quantum Gaussian states and their properties the main difficul-
ties are non-commutativity, which adds to the complexity due to the high dimensionality of the
problems (as in the analysis of classical multidimensional Gaussian distributions), and the lack of
a simple explicit formula for the density of a quantum Gaussian in terms of the covariance matrix.

When I last met Partha in late January 2020 at ISI Delhi in his office at the first floor, that
he still visited once or twice a week, he had just published the work [[7] in collaboration with Tiju
J. Cherian in which, starting from Klauder-Bargmann integral representation of Gaussian symme-
tries in terms of coherent states, they developed a new parametrization of Gaussian states, as an
alternative to the customary parametrization by position-momentum mean vectors and covariance
matrices. He showed me with his usual enthusiasm and clarity how to write the density of a state p
of the form ZI Z, where Z, is the product of a normalization constant, of the second quantization
of a positive contraction operator and an operator of the form exp (ZZJ‘:1 Qa5+ Z?Zl /\]- aj),
where (a;);<j<, are the annihilation operators corresponding to the n different modes, [;,;] is a
symmetric complex matrix and A; € C. This allowed them to get an explicit particle basis expan-
sion of an arbitrary mean zero pure Gaussian state vector along with a density matrix formula for
a general Gaussian state, a class of examples of pure n-mode Gaussian states that are completely
entangled and applications to the tomography of an unknown Gaussian state and other interesting
consequences.
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These results clarify many properties of quantum Gaussian states, often hidden in complex
formulas used by physicists. Furthermore, they reveal the profound relationship of classical Gaus-
sian distributions of which quantum Gaussian states are the natural extension when one considers
incompatible observables in quantum theory. I think that, in the future, they will receive more
and more attention even if it will be a slow process because, as Partha said in the 90s (and today
it is even more true), “people are so busy writing that they have no time to read”.

Regardless of the immediate resonance of his work, he continued to produce mathematics “for
fun”, supported by Shyama, his faithful, devoted and helpful wife of a lifetime, who in recent
years accompanied him on his walks “for exercise” throughout the day. For all those who had
the invaluable privilege to know Partha and exchange ideas with him, his deep knowledge and far
reaching insight on many areas of mathematics have always been inspiring.

Partha has left an indelible influence on all the community of Quantum Probability of which
he was a founding father, his students, colleagues and many researchers that just came across his
work. All his discoveries and new knowledge will keep his memory alive.
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10. Remembering KRP

Srinivasa R. S. Varadhan
Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, USA
Email: varadhan@cims.nyu.edu

I met KRP when I arrived in Calcutta as a research scholar in August 1959. He shared an
office with Ranga Rao and we ran into each other regularly at tea.

I was not sure what I wanted to do. I thought I was going to work on applications of Statistics.
C. S. Ramakrishnan who was around at that time tried to convince me that Operation Research
was the most important thing and that I should read Bellman. For a few months I was confused
about my goals. Varadarajan and Bahadur gave courses on measure theory and point set topology.
I attended them. KRP got hold of me and suggested we work on a real problem. Varadarajan
had left for US by then. Ranga Rao, KRP and I started working on a problem. We worked
hard and accomplished quite a bit in two years. We studied convolution properties of probability
distributions on topological groups.

KRP was very disciplined. I would go frequently to the city to see a movie or eat at a restaurant.
KRP would frown at it. I wanted to learn how to swim. The institute had a pond that one can
swim in, and KRP offered to teach me. But only at 6 am. It was too cold and I never took up on it.
For about eighteen months we worked on probability distributions on groups. It was a lot of fun.
We would gather at 7 a.m. and work till early afternoon with a short lunch break. Kolmogorov
visited ISI and some of us traveled with him to Bangalore. KRP who knew some Russian acted as
the interpreter. Dr C.R. Rao asked Kolmogorov to be a reader for my thesis.

Then KRP left for Moscow. While there he was helpful in getting Kolmogorov to send a report
on my thesis.

I graduated from ISI and moved to the US. I met KRP and Shyama many times in England,
Mumbai, Delhi and in New York when he visited us at NYU for a month.

My years of working with him in the sixties was an experience that I will always cherish.

oo

KRP and the author are seen in the photos, with
Prof. Ranga Rao (top left) and Mrs. Parathasarathy (bottom left)
(Photos courtesy of Mrs. Shyamala Parathasarathy)
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11. K. R. Parthasarathy as a Teacher of Mathematics

Rajendra Bhatia
Ashoka University, Sonepat 131029, Haryana, India
Email: rajendra.bhatia@ashoka.edu.in

K. R. Pathasarathy’s life and personality were marked by seriousness, sincerity and a sense
of purpose. These qualities suffused all his professional activities: learning and reading, research,
teaching, editing and committee work. Over five decades of association with him, I had the good
fortune of attending several of his courses, seminars, talks and public lectures. In this article I
share some of my reminiscences.

The first course I took from KRP (as he was commonly known) was a course on Measure
Theory given to masters students at II'T Delhi in 1973. Three weeks into the course I was struck
by the realisation that he had already covered more material than what had been done in most
of my one semester courses earlier. Further, he had managed to do so effortlessly. This was a
hallmark of all his courses that I took subsequently.

Over the years I came to understand that KRP had a deep and thorough knowledge of his
subject which he upgraded constantly. He had a genuine desire to communicate it clearly. In
his first lecture he would give several examples of the objects that were going to be studied and
make a case for the importance of the subject. He was always well-prepared and never casual. He
delivered his lectures with great enthusiasm, energy and passion. He structured his course with
great care. I remember his advice that one major theorem should be proved in each lecture.

To give an idea of the place of teaching in KRP’s life I recall two conversations. Once he
explained to his students that there are four stages in a mathematician’s evolution. First, he
should be able to understand mathematics. Second, he should be able to explain it clearly to
others. Third, he should be able to solve problems, and finally the fourth, he should be able to
create problems. The second stage was important in his thinking. On another occasion someone
reported that a certain mathematician was very sick and his diet had been restricted to boiled rice
and boiled banana. KRP looked sad and responded "Then you cannot lecture with energy.” That
was a very revealing reaction. He took teaching as a central purpose of his life.

Apart from his several masters courses, KRP regularly organised and lectured in research
seminars. Whenever he travelled to attend committee meetings he would volunteer to give a
talk at the host institution and often say that was more important than the meeting. This was
especially valued in an era when travel funds for lectures and meetings were scarce.

At most Indian universities professors keep a distance from students. Informal discussions
and common-room meetings are rare. KRP created both time and space for such meetings. He
also invited students to his home. Because of his stature, his knowledge, his passion and his wit
he was often the main light of these meetings. From these meetings a student gained a glimpse
of the culture of mathematics. On one occasion early in my association with him he said that
Harish-Chandra’s work was so deep and difficult that if he decided to spend all his life just trying
to understand it, he would not be able to do it. His life was just too short for it. Such a comment
was an eye-opener for a young student. A few months later, in another context, he said Harish-
Chandra is a problem solver whereas Gelfand is a creator of new fields (in mathematics). These
conversations played a very valuable role in our education.

Incidentally, KRP had an unreserved and unbounded admiration for A. N. Kolmogorov with
whom he worked soon after his PhD. The qualities he often mentioned were his greatness as a
mathematician, his attempts at teaching students at all levels including high schools, his support
to mathematicians in difficult situations including those from Jewish backgrounds facing discrim-
ination from the State. KRP’s stay in the Soviet Union in the early 1960’s had influenced and
affected him in several ways. In 1974 when Solzenitsyn’s Gulag Archipelago appeared he ob-
tained a copy of the French edition at some effort and often talked of it. On the lighter side he
often regaled his students with an imitation of Nikita Khrushchev’s speech in Russian that he had
heard on the radio during the Cuban crisis.

KRP was fastidious about neatness in thinking, writing and talking. When a student would try
to tell him about some idea he had and excitedly began writing on the board, KRP would sternly
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admonish “Start from the top left-hand corner of the board.” He also discouraged obsequious
behaviour. In India it has been a common practice for a speaker to begin a lecture by making a
special reference to the senior persons present. For example, "Professor X, Professor Y, Professor
7 and dear friends....” I remember an occasion when a speaker began his mathematics colloquium
in this way. KRP sternly spoke from the first row “The first word in a mathematics talk should
be ‘Let’”

I recall with special admiration an event from 2011 when KRP was 75 years old. Despite my
long association with KRP and with ISI my knowledge of statistics is somewhat meagre. Some
work in matrix analysis that I did around 2005 seems to be of interest in areas like machine learning,
image processing, brain-computer interface etc. The name “matrix information geometry” has been
used to encompass some of these ideas. There are links with the classical differential geometric
ideas in statistics going with the Rao-Fisher metric. (This was almost the first major work by C.
R. Rao done in Calcutta of which KRP was a great admirer.) In 2011 one of my students and I
were invited to an international conference whose theme was to be matrix information geometry.
I requested KRP to explain to us the work of Rao and Fisher. As was his nature, he immediately
agreed. Then he gave us two beautiful lectures on the topic and at the end handed me a few pages
of notes. These were written like a very serious student’s assignment in bold neat hand. To think
that he did so when he was 75, and in response to a small request, is truly inspiring.

This characterised KRP’s several conference talks at meetings and at instructional conferences.
The audience was always treated to a well-prepared substantial talk, sonorously delivered with
passion. Many people all over India heard and enjoyed his lectures. If one person has to be
thought of as a “national teacher” of mathematics, it would be him.

goo

Glimpses of KRP as a scholar (Images courtesy of Mrs. Shyamala Parthasarathy)
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12. Prof. K. R. Parthasarathy - a Profile

Kalyanapuram Rangachari Parthasarathy (K.R.Parthasarathy, Partha or KRP as he was var-
iously known) was born on 25th June 1936 in Madras (now Chennai). He had his early schooling
in Thanjavur and continued his studies at P.S. High School, in the Mylapore area of Madras. He
then joined the Ramakrishna Mission Vivekananda College, Madras, from where he obtained his
B. A. (Hons) in 1956 of the University of Madras, and the M. A. followed in 1957, by eflux of time.
Following graduation, in 1956 he proceeded to join a “three-year advanced professional statisti-
cians’ course” at the Indian Statistical Institute, Calcutta (now Kolkata), in an environment in
which there was a deep sense of a need for a large army of well-trained statisticians to monitor and
formulate new economic programmes. Though the programme was focused on statistical practice,
near the end of the programme the students were to do a project, which is when “after spending a
few days in our well-equipped library” KRP made his choice to go along a theoretical line - and that
was to stay - and did a project on the moments problem. Along with the certificate for the course
he earned a scholarship to do research for the Ph.D. degree under the supervision of Prof. C. R. Rao.
Two significant results that he contributed, one on the density of ergodic probability measures and
another on integral representations in terms of ergodic components, earned him his Ph.D. from
ISI, in 1962. 1SI was declared an institute of national importance, by an act of parliament, in 1959,
authorizing it to confer its own degrees, and KRP got his Ph.D. degree, along with another student
J.Sethuraman, in the first convocation held on 12 February 1962, in a grand ceremony which also
featured conferment of the degree of Doctor of Science (honoris causa) upon various luminaries, S.
N. Bose, R. A. Fisher, Jawaharlal Nehru, A.N. Kolmogorov and W. A. Shewhart!

The following year, during 1962-63, he worked at the Steklov Institute of the USSR Academy
of Sciences, in Moscow, as a lecturer, and participated in the Seminars of E.B.Dynkin and
Ya. G. Sinai, and the famed Monday evening programmes of I. M. Gelfand.

Returning from Moscow, he served as lecturer at ISI, Calcutta, for two years, following which in
1965 he joined the University of Sheffield as a lecturer in Probability and Statistics. His outstanding
research record earned him rapid promotions, to Senior lectureship in 1966 and Readership in 1967,
and in 1968, he was appointed as Professor in the University of Manchester Statistical Laboratory,
within the Sheffield-Manchester Joint School of Probability and Statistics. He however held the
post only for two years, 1968 — 70, deciding to return to India. During his five years of stay in UK,
he also visited and gave lectures, and lecture courses, at various institutions in Germany, France,
Denmark, Norway as well as Australia, and also within UK.

While he may have been sceptical about good opportunities in India where he could pursue his
work fruitfully, he received an offer of Professorship, in 1970, at the Centre for Advanced Study in
Mathematics, set up by the University Grants Commission (UGC) at the University of Bombay
(now Mumbai), which he accepted. He moved to Delhi in 1973, as Professor and Chairman of the
Department of Mathematics, at the Indian Institute of Technology (IIT) Delhi.

On 31 December 1974 a new campus of the Indian Statistical Institute was inaugurated in New
Delhi, and soon after that C. R. Rao suggested to KRP that when the buildings were completed he
should think of moving over to ISI. He soon began to participate in the academic activities there and
near the end of 1976 he joined the new centre of ISI, to build up its Mathematics and Statistics
Unit. He continued there, as a regular member until the mandatory superannuation in 1996,
as C.V.Raman Research Professor of INSA from 1996 to 2001, and later as Emeritus Professor.
During the years he undertook numerous visits for conferences, research collaborations and lectures
in Europe, USA, and China, and also spent one year, 2001, at the Institute of Mathematical
Sciences, Chennai.

He authored over 150 research papers and 10 books, covering a wide range of areas, which have
had a huge impact. In particular he pioneered the area of Quantum Stochastic Calculus, jointly
with Robin L. Hudson. He had numerous collaborators around the world and guided many Ph.D.
students. He also served on numerous committees influencing the course of Mathematics in India.

He was awarded the Shanti Swarup Bhatnagar Prize for Mathematical Sciences in 1976, and
The World Academy of Sciences Prize in 1996.

He received also the Mahalanobis medal of the Indian Science Congress (2002) and the Srinivasa
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Ramanujan Medal of the Indian National Science Academy (2013). He was awarded Honorary Doc-
torate of Nottingham Trent University (2000), Doctorate of Sciences of the Chennai Mathematical
Institute (2009), and Honorary Doctorate of the Indian Statistical Institute (2013).

He was an invited speaker at the International Congress of Mathematicians at Zurich (1994),
and was invited in 1995 for the Hardy Lecture Tour, covering several universities in UK, starting
with Cambridge, on 21 May 1995, and continuing at Oxford, Swansea in Wales, Manchester,
Edinburgh in scotland, Dublin in Ireland, and Nottingham, London, Sheffield, Liverpool and
Warwick.

He served as a member of the Executive Committee of the International Mathematical Union
during 1995 — 98. He was elected Fellow of The World Academy of Science (TWAS), the Indian
Academy of Sciences (IASc) and the Indian National Science Academy (INSA), and served on the
Council of INSA during 1983 — 85.

His lively and inspiring presence amidst us will be acutely missed by a large section of the
mathematical community.

oo

KRP receiving the Honorary Doctorate of the Indian Statistical Institute
from Dr. C. Rangarajan (2013)
(Images courtesy of Mrs. Shyamala Parthasarathy)
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KRP with the younger generatlon a family photo
(Photos courtesy of Mrs. Shyamala Parthasarathy)
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