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From the Editors’ Desk

Recent developments in Artificial Intelligence (AI) are hitting the headlines of most popular
and influential newspapers across the world. This has created an awareness among people at large
and generated an intense discussion on whether Al is a boon or a curse for humanity.

All said and done, modern AI developments have the potential to bring about many positive
changes in our lives. To name a few, Al can automate many tasks that are currently performed
by humans, freeing up our time and resources for more creative and strategic work. Al can help
to make better decisions in a variety of areas, such as business, finance, healthcare, environment
preservation, accurate weather predictions etc. Al can be used to develop renewable energy sources,
create new vaccines, and improve agricultural yields and thereby address some of the world’s most
pressing challenges.

However, it is also important to be aware of risks from these developments in order to ensure
that they are used responsibly and ethically.

The major threats of Al include, widespread job displacement, particularly in industries that
are heavily reliant on manual labour; Al systems could be exploited for malicious purposes, such
as developing autonomous weapons or creating digitally altered sensitive videos that could be used
to spread misinformation; Al could be used to create mass surveillance systems that track and
monitor people’s every move, which could lead to a loss of privacy and freedom. Some experts
worry that Al could eventually become so powerful that it may surpass human intelligence and
control, which could lead to catastrophic consequences.

The following are some measures recommended by Al researchers to mitigate the risks of Al:
o Invest in education and training to help people develop the skills they need to succeed in the

AT economy.
e Evolve ethical guidelines for the development and use of Al
¢ Regulate Al to prevent it from being used for harmful purposes.
¢ Research ways to make Al systems more transparent and accountable.

In Article 1, Prof. Ramamohan and Prof. Pathak have discussed the historical perspective of Al
They highlight the significant role played by Mathematics in evolution of modern AT techniques and
discuss how these techniques are reconfiguring the intellectual and physical work spaces throughout
the world. Specifically, they have given illustrations of some complex mathematical problems,
resolution of which was significantly impacted by advanced computational techniques and modern
Al systems.

The second Article contains excerpts from a conversation of Professor Ramachandran Balasub-
ramanian, a renowned number theorist and a former Director of The Institute of Mathematical
Sciences, Chennai, with Prof. Ambat Vijayakumar and his students, at CUSAT, Cochin.

In Article 3, Dr. D. V. Shah gives an account of significant developments in the Mathematical
world during recent past, including brief write-ups on the winners of the 2024 Breakthrough Prize,
the 2024 Maryam Mirzakhani New Frontiers Prize and 2024 New Horizons in Mathematics Prize.
An obituary note on renowned mathematicians Prof. J. Tinsley Oden, Prof. Melvin Gordon
Rothenberg and Prof. T. Parthasarathy, who passed away recently, is also included in this article.

We also pay tributes to India’s legendary Statistician PROF. C. R. Rao, who passed away on
22 August, 2023.

In the Problem Corner, Dr. Udayan Prajapati presents two solutions to the problem posed in
the July 2023 issue. These solutions are given by Prof. J. N. Salunke and by a student Pranjal Jha.
A problem on Geometry is also posed, for our readers. Dr. Ramesh Kasilingam gives a calendar
of academic events, planned during November, 2023 to January, 2024 in Article 5.

We are happy to bring out this second issue of Volume 5 in October, 2023. We thank all the
authors, all the editors, our designers Mrs. Prajkta Holkar and Dr. R. D. Holkar, and all those
who have directly or indirectly helped us in bringing out this issue on time.

Chief Editor, TMC Bulletin



1. Evolution of AI and its Impact on Computational
Mathematics: Part - 1

S. Ramamohan and Vijay D. Pathak
Retired faculty, M. S. University of Baroda, Vadodara
Email: srmmsu@gmail.com and vdpmsu@gmail.com

Abstract: The recent advancements in the field of Artificial Intelligence (AI) based on Deep
Artificial Neural Networks has made it possible to develop Al systems like AlphaGo, AlphaFold,
AlphaTensor, which are reconfiguring the intellectual and physical work spaces throughout the
world. While Mathematics plays a significant role in these developments, many of the long pending
unsolved problems in Mathematics have been solved as a result of the progress in Computing
Technologies and Al. Specifically, the AlphaTensor system introduced in [1], has been successful
in auto-generation of the matrix multiplication algorithms which are faster than the best known
algorithms in the literature.

In this two-part article, we give an account of Evolution of Al systems and their impact on
Computational Mathematics. In Part-1, we discuss important milestones in these developments
starting from origins of Artificial Neural Networks (ANN) up to the recent Deep Neural Networks
(DNN) and briefly discuss Al systems developed based on DNN. At the end of the first part we
mention some complex mathematical problems, resolution of which was significantly impacted
by these advanced computational techniques and Al systems. In Part 2, we will discuss how
increasingly faster Matrix multiplication algorithms have evolved in the last few decades. We will
explain how any matrix multiplication algorithm can be represented by a 3-dimentional tensor and
how recently developed Al system “AlphaTensor” has been used for auto-generation of efficient
matrix multiplication algorithms.

1.1 INTRODUCTION

Human efforts to design machines to carry out arithmetical operations on numbers dates back
to early 1640s when Blaise Pascal designed his first ever mechanical adding machine -“Pascaline”.
Persistent efforts in this direction led to the development of efficient electronic calculators. This
process culminated in the development of digital computers with the concept of stored program-
ming principle introduced by Von Neumann in 1940s. Since then, there has been a rapid progress
in the computing devices resulting in exponential reduction in their size and exponential growth
in their computing power. These increasingly powerful computers were mainly programmed us-
ing formal deterministic algorithms based on available techniques, to resolve the problem under
consideration. The development of computational techniques using this approach, have helped in
tackling difficult problems in several fields including mathematics.

Artificial Neural Networks (ANN) which emerged in 1940s, adopted a different approach to
problem solving. ANN had capabilities to learn Input-Output relationships from the available
data regarding a phenomenon, and then generalize it to infer reasonable assertions on data that it
had not been exposed to earlier.

The origins of Artificial Intelligence (AI) can be traced back to the early 20th century, when
philosophers and scientists began to explore the possibility of creating machines that could think
like humans. In 1950, Alan Turing published a landmark paper in which he proposed the Turing
test, a test of a machine’s ability to exhibit intelligent behavior equivalent to, or indistinguishable
from, that of a human. In the 1950s and 1960s, Al researchers developed a number of early Al
systems, including initial versions of expert systems, natural language processing systems, and
machine learning systems. However, many of these early systems were limited in their capabilities.

The true challenge to Al proved to be solving the tasks that are easy for people to perform
but hard for people to describe formally - problems that we solve intuitively, that feel automatic,
like recognizing spoken words or faces in images, and generating innovative ideas based on cur-
rent knowledge and available data, for tackling problems under consideration. Among several
approaches the scientists employed to meet these goals of Al, one prominent approach was to
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build systems mimicking the functioning of the human brain. The ANN architectures fitted natu-
rally into this approach. The advancement in ANN methodologies led to Multilayer networks and
to Deep Neural Networks, by the first decade of 21! century. Currently several goals of AI have
started to be realized by systems that have DNN in their core. Some such systems like ChatGPT,
Bard, AlphaGO, AlphaTensor are making deep impact in all walks of human life.

In part 1 of this article, we will be discussing various milestones in the development of one
set of ANN architectures called feedforward networks (in which signals propagate in the direction
from inputs to outputs) leading to DNNs and evolution of new Al systems. We will also briefly
discuss the mathematical theories backing these developments and various complex mathematical
problems resolved using advanced computational techniques and the power of AI. Whereas in Part
2, we will give an account of various Matrix multiplication algorithms available in the literature
and try to explain how the AI techniques can be used for auto generation of efficient and verifiable
Matrix multiplication Algorithms.

1.2 ARTIFICIAL NEURAL NETWORKS(ANN)

The information processing cells of the brain are the neurons. Each neuron is a type of cell with
nucleus and communication links called dendrites and axon. A neuron receives electrochemical
signals through several dendrites and the axon carries an output signal to other neurons. Inspired
by this microscopic behavior of real neurons, in early 1940’s, Warren McCulloch and Walter Pitts
[21] introduced the concept of an artificial neuron. McCulloch and Pitts aimed to create a simplified
mathematical model of a neuron that could capture essential aspects of neural behavior and perform
computations similar to those carried out by real neurons. They were influenced by the concept of
a neuron as a basic building block of the brain, capable of receiving inputs, processing them, and
producing an output signal based on a threshold or an activation function.

One of the distinguished abilities
Inputs s of human intelligence is the ability

—_—
Dendrites . to receive sensory inputs regarding
/\ : 0\ a process or phenomenon and make
- "‘,. f - wi

useful inference regarding the real

w2 Output
s WR

: A (.. S world, recognize patterns effortlessly
7| Q/' and based on this recognition classify
Nucleys tivee objects into categories. Human brain

Function
—

J learns to classify data of a real-world
system from the sample inputs it re-
ceives and then put the future unseen
patterns in appropriate categories. Formally, the data classification problem for 2-class case [27]
with linear separating hyperplanes in R” can be stated as:

Figure 1: Biological Neuron to Artificial neuron (See [30])

Given a set of Q data samples or patterns X = {xl,xz,...,xQ}, x;€R" drawn from 2 classes
Xo, X1, find an appropriate hyperplane that separates the two classes so that the resulting classi-
fication decisions on the unseen samples from these classes are on an average in close agreement
with the actual outcome.

Mathematically, it can be proved that a hyperplane separating two sets Xp, X7, exists if the
sets are linearly separable, that is, if the convex hulls Cov(Xj), Cov(X7) of these sets are disjoint.

McCulloch and Pitts’ artificial neuron model (see Figure 1) has been created with a modest
objective to solve a 2-class linear classification problem in Boolean space B" = {0,1}" which
can be associated with a Boolean function g: B"— {0,1} so that the two sets to be separated
are Xo = ¢ 1(0) and X; = ¢ !(1). The model consisted of binary inputs {x1,x,...,x,}, a
bias xg, output y, weights {wp, w1, ..., wy} and an activation function f. Here, xg is taken as a
constant 1 or -1, and the weight wg (b in Figure 1) corresponds to the resting membrane potential
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n
which is unknown to be determined. The neuron produced an output signal y = f (Zwixl).
i=0

Mathematically it is possible to decide whether such weights exist or not and if they exist, to
compute appropriate weights corresponding to the classification problem (or associated Boolean
function) under consideration. However, the question here is whether we can train the network
to generate such appropriate weights from the known input-output patterns starting from some
initial weights (normally all zero). The procedure that makes it possible for the ANN to learn this
weight modification process is called a learning algorithm, which is an integral part of ANN and
makes it a starting point of Al

McCulloch and Pitts’ work, published in 1943 [21], laid the foundation for the development
of artificial neural networks and became a significant contribution to the field of computational
neuroscience and artificial intelligence. It provided a starting point for subsequent researchers
to explore more complex neural network architectures and learning algorithms, leading to the
development of modern neural network models and deep learning techniques.

1.2.1 Learning in neural networks

Learning in neural networks refers to the ability of a neural network model to improve its perfor-
mance on a task or problem through experience or exposure to training data. It involves adjusting
the weights and biases of the network’s connections to optimize its behavior and enhance its ability
to more accurate predictions or classifications. The significance of learning in neural networks lies
in its capacity to enable machines to acquire knowledge and skills from data without explicit pro-
gramming. Neural networks can learn patterns, relationships, and representations directly from
the data they are trained on.

In this perspective, ANNs can be regarded as model-free estimators with connectionist network
of simple computing units (neurons) along with learning rules that train the network to discover
inherent dynamics in the data exposed to the network.

Some key aspects of the learning in neural networks are as follows:

Adaptability and Generalization: Neural networks can adapt to changing environments or new in-
put data by adjusting their internal parameters. Through learning, neural networks can generalize
from a limited set of training examples to make accurate predictions or classifications on unseen
data. This generalization ability is crucial for the network to be able to handle real-world scenarios
beyond the specific examples it has been trained on.

Pattern Recognition: Learning allows neural networks to recognize complex patterns and extract
meaningful features from raw data. This ability has broad applications in areas such as image
processing and speech recognition, natural language processing, and recommendation systems.
Nonlinear Modelling: Neural networks can capture and model nonlinear relationships between
input and output variables. This flexibility makes them suitable for solving complex problems
that may involve intricate nonlinear interactions.

Automation and Efficiency: Neural network learning automates the process of knowledge acqui-
sition and allows machines to learn and improve performance without human intervention. This
can lead to more efficient and scalable solutions in various domains.

Uncovering Hidden Information: Neural networks can learn to uncover hidden or latent represen-
tations in the data. They can discover underlying structures, detect anomalies, or reveal insights
that may not be easily apparent through traditional analytical methods.

1.2.2 Types of ANN Learning

Learning in neural networks is very significant because it empowers machines to acquire knowl-
edge, make informed decisions, and perform complex tasks by autonomously learning from data.
Depending on the nature of the problem of learning we can classify learning algorithms into three
categories: Supervised, Unsupervised and Reinforcement.
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Supervised Learning

Many real world processes connect input parameters to the resulting output parameters. The exact
relationship among the input and output parameters may not be known and may even be difficult to
predict. However, a data set in the form of pairs of input-output vectors, {(x;, y;)|x;€eR", y;e RP,i =
1,2,... N}, is available and our task is to predict output vector y corresponding to a given (unseen)
vector x. If ANN is designed to carry out this task, the available data is used for training the
network. When an input x; is presented to the system, it generates an output z;, depending on the
current values of the weights. Supervised learning computes the error ||y; — z;|| (some norm quan-
tifying the difference between predicted and desired outputs) and iteratively modify the weights
so as to reduce this error. The implementation of the supervised learning algorithm is usually in
the form of difference equations that are designed to work with such global information.

The set of data implicitly describes the behavior of the unknown function f :IR"—IR”. Super-
vised learning encodes this behavioristic pattern into the network by approximating the function
f. Traditional techniques such as linear or non-linear (polynomial) regression assume some math-
ematical form and then attempt to estimate the function through determination of coefficients in
the polynomial. ANN methods make no such assumptions.

Unsupervised Learning

Unsupervised Learning Algorithms learn patterns and structures from unlabeled data without any
explicit target or output labels. An unsupervised learning system attempts to represent the entire
data set which consists of only input vectors {x;eR",1,2,... N}, by employing a small number of
prototypical vectors - enough to allow the system to retain desired level of discrimination between
samples. Note that there is no teaching input. In other words, the system attempts to answer
a question: Given a set of data samples as above, is it possible to identify well-defined clusters,
where each cluster defines a class of vectors which are similar in some broad sense. Clusters help
to establish a classification structure within a data set that has no categories defined in advance.
Learning in an unsupervised system is often driven by a complex competitive-cooperative process
where individual neurons compete and cooperate with each other to iteratively update their weights
based on the present input. Only winning neurons or clusters of neurons learn in each iteration.

The Reinforcement learning

The reinforcement learning is similar to supervised learning because it receives some feedback
from its environment, not necessarily in terms of desired output values (which may or may not be
known) corresponding to an input vector. The feedback obtained here is evaluative in terms of
rewards from the environment as the consequences of its actions. This external feedback, called
the reinforcement signal, is used to adjust the weights so as to get a better reward in next iteration.
The agent does this by trial and error.

1.3 EvoLUTION OF ANN AND LEARNING MECHANISMS

The models of ANN are specified by: (i) model’s synaptic interconnections (ii) the training or
learning rules used for updating the connection weights (iii) an activation function for each neuron.

An ANN consists of highly interconnected neurons such that each neuron’s output is connected
through weights to other neurons or to itself. The arrangements of neurons to form layers and
connection pattern formed within and between layers is called network architecture. The ANN
architectures can be classified as : (i) single layer or multilayer networks (ii) feed-forward, feedback
or recurrent networks.

In single layer networks the neurons receiving inputs (input layer) are directly connected to
neurons producing outputs (output layer). In multilayer networks between input and output layers
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there are one or more layers which are not directly connected to the environment and hence called
hidden layers.

A network is said to be a feed-forward network if output of a neuron in any layer is not an
input to a neuron in the same layer or in the preceding layers. On the other hand, when output
of a neuron is directed back as an input to a neuron in the preceding layers or the same layer
or to the same neuron then the network is called a feedback/recurrent network. An activation
function or a transfer function maps a net input to a neuron (weighted sum of all inputs to the
node) into an output. Most commonly used activation functions are: (i) binary step function based
on some threshold value (ii) binary sigmoid function based on some steepness parameter (iii) a
Ramp function (iv) hyperbolic tangent function (v) Gaussian function based on two parameters
(vi) Stochastic bipolar function associated with some probability distribution over input space and
(vii) the more recent ReLU (Rectified Linear Unit).

We give below some milestones in the evolution of ANN leading to Deep neural networks.

1.3.1 Neuron and Hebbian Learning (1949)

The McCulloch-Pitts neuron takes binary inputs and produces a binary output based on a prede-
fined activation function. The Hebbian learning rule, proposed by Donald Hebb in the late 1940s,
is a fundamental concept in neural network learning. It is stated in the following passage from
Donald Hebb’s 1949 book [15] on page 62: “When an afferent (sensory) pathway repeatedly dis-
charges into a cell, the synapse between them becomes more effective”. The Hebbian learning rule
can be expressed as “cells that fire together wire together”. It suggests that when two connected
neurons are activated simultaneously, the strength of the synaptic connection between them is
increased. More precisely, in Hebb’s rule, the weights are updated using the following formula: If
w; is a weight associated with connection between input x; (jth component of the input vector X)
and the targeted output y, then wj(new) = w; + x;y, for j = 0,1,...,n, where xo = 1 or —1 and
wo is the bias.

It is important to note that the Hebbian learning rule has limitations when applied over binary
data and hence, representing data in bipolar form is advantageous.

1.3.2 Perceptron and Perceptron Learning Rule (1957)

In the 1950s and 1960s, the exploration and development of learning in neural networks gained
significant attention, and one of the key contributors during this period was Frank Rosenblatt.
Rosenblatt’s pioneering work on perceptron culminated in two major publications:

The bias input xo= 1 activation function net G
@ r S
- e, / / o~
"' .___.x— - @ = \—::1-: L i itrs
@ iy = eCawe) L ) i
- / -
(2
0 ifnet <0 (0.0) 0.1 (1.0) (L1
Plnet) = {1 if et = 0 0 L[ '
Figure 2: Perceptron Figure 3: Perceptron for OR function

In 1958, Rosenblatt published a paper [24] which presented the perceptron as a mathematical
model (see Figure 2) for simulating the information processing capabilities of biological neurons.
It described the architecture of the perceptron, the learning algorithm based on the concept of
error correction, and its potential applications in pattern recognition and information storage.

In 1962, Rosenblatt published a book [25] which expanded upon the ideas presented in his earlier
paper and provided a comprehensive account of perceptrons, their structure, learning algorithms,
and theoretical analysis. It also included practical examples and applications of perceptrons (such
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as given in Figure 3), along with discussions on the limitations and potential future developments
of the model.

Rosenblatt’s work on perceptrons introduced the concept of supervised learning, proposed the
Perceptron Learning Rule (1957) which was designed for single-layer perceptrons and proved its
convergence.

The precise statement of the Perceptron Learning Rule and the Perceptron Convergence The-
orem are given below:

e Perceptron Learning Rule: Given a binary classification problem where each input instance
is represented by an associated feature vector ¥ = (xo,x1,...,%,), with xg = 1 or —1 and
X1,..., Xy are components of input vector and a corresponding target output y (either 0 or 1),
the Perceptron Learning Rule updates the associated weight vector @ = (wo, w1y, wo, ..., wy),
with wy as bias, as follows: Initialize the weight vector w to small random values or zeros.
For each training example (X,y), do the following:

a. Compute the predicted output z = ¢ (@ - ¥), where activation function ¢ is the binary
step function.

b. Update the vector @ using the following update rules: @(new) = @ - sgn(w - X)yx if
z # y, otherwise @(new) = w. Here, 1 is the learning rate, which controls the size of
weight updates.

e Perceptron Convergence Theorem: The Perceptron Convergence Theorem, proved by Frank
Rosenblatt in 1962, states that: Given a linearly separable dataset, there exists a choice of
initial weights and learning rate that will make the Perceptron Learning Rule converge in a
finite number of steps.

The theorem ensures that if the data is linearly separable, the Perceptron learning rule will
eventually find a solution by adjusting the weights based on the error in the predictions. However,
if the data is not linearly separable, the Perceptron learning rule may not converge and will not
find a separating hyperplane. In 1969, Marvin Minsky and Seymour Papert published the book
[25] “Perceptrons”, which demonstrated some of these limitations and highlighted the challenges
of training perceptrons to solve complex problems.

The weights for simulating the “OR” function, are depicted in Figure 3. These weights can be
obtained using the Perceptron learning rule, starting with initial weight vector 0, and training the
network iteratively by repeatedly giving 4 pairs of input vector ¥ and corresponding outputs y in
each iteration. This iterative process is said to converge if the weights do not change during an
iteration. Observe that the sets to be separated (corresponding to OR function) in space B? are
Xo = {(0,0)} and X3 = {(0,1),(1,0),(1,1)} and the separating hyperplane (line) is represented
by equation: 2x1 +2x, — 1 = 0.

The limitations of Perceptron can be realized if we try to simulate XOR function (see Figure
4). One can easily see that to simulate XOR function, the weights should satisfy the conditions:
—wy < 0; —wg+wy > 0; —wg+wyp > 0; —wy + wy +wy < 0; which is impossible to satisfy
by any real values of weights. Here the sets to be separated are Xy = {(0,0),(1,1)} and X; =
{(0,1),(1,0)}. The convex hulls of these two sets are line segment L; joining the two points (0,0)
and (1,1) and the line segment Ly joining the points (0,1) and (1,0) which are not disjoint and
hence the sets are not linearly separable.

This led to a decline in interest in neural network research until the resurgence of the field
in 1980s with the development of more advanced learning algorithms and architectures, such as
backpropagation and multi-layer neural networks. However, Rosenblatt’s work on perceptrons
remains a landmark in the history of neural networks, laying the foundation for later developments
in learning algorithms and inspiring further research in the field.
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1.3.3 Adaptive Linear Systems and Delta Rule (1960)

Delta rule (also known as Widrow- Hoff rule or the Least Mean Square (LMS) rule) was developed
by Bernard Widrow and Marcian Hoff [@] It is widely used in the development of adaptive
linear systems and commonly used for training linear regression models and single-layer neural
networks (see Figure 5). The Delta Rule updates the weights and bias based on the difference
between predicted output and the target output, scaled by the learning rate, so as to minimize the
meansquared error between the predicted output and the target output. Specifically, consider a
single layer network connecting n input neurons to p output neurons and consider a pair of input
output vectors (%,7), £ € R"*!, (where xo = 1 for all vectors x as mentioned earlier) 7 € R”. Let
w;j be a weight associated with the connection between it" input neuron to jth output neuron and
weight vector w; = (WOj/ wyj, . - .,wnj), j=201,...,p, and wo; is the bias associated with the jth
output neuron. Then y;, ; = X.@; and the mean-square error E between actual output vector 7
and ¥y, is given by: E = %2;7:1(]/]' — Yin ]')2 which is a function of weight vector @; we have to
find @; so as to minimize E. This minimization problem can be resolved using gradient decent
method which is based on the result in multivariate calculus which states that: The function E
decreases most rapidly in the direction of negative gradient of E with respect to weights w;; for
i=1,2,...,n. Weight adjustment procedure based on this fact is the delta rule. Thus, with every
input-output pair given as data to the ANN the weights w;; are modified as follows:

wij(new) = w;; + 17(Y; — Yinj), for i =0,1,...,n. Note that (y; — yiu j)x; is the i" component of
gradient of E and # is the learning rate.

1.3.4 Multilayer Perceptron (MLP) and Backpropagation Rule

During the 1980s and 1990s, the development of Multi-Layer Perceptron (see Figure 6) witnessed
significant advancements, starting from the discovery of the Backpropagation algorithm to the
success of LeNet-5, designed by Yann LeCun. A multi-layer perceptron could represent the XOR
function. A general 2-layer perceptron is illustrated in Figure 7.

A 2-layer Neural Network

Figure 6: Multilayer Perceptron Figure 7: An XOR Neural Network
Here, hi, ; = Ziz:owijxi; hi = @(hinj); Yin = Z?:Ovjhj and estimated y, y. = ¢(yin), where
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activation function ¢ is the binary step function.

Taking X0 = ]’Zo = —1, Wo1 = 1.5, W = 0.5; wi]- =1fori= 1,2 andj = 1,2; Uy = 0.5, 01 = -2
and vy = 1, this 2-layer perceptron can simulate XOR function. The computations are shown in
Table 2. Observe that the estimated output by the MLP exactly matches with the output of the
XOR function.

x1 | X | Bint | b | Bin2 | ho | Yin | Ye
010 1|-1510/|-15]01-05]0
0 1 1-051]0 0.5 1 105 |1
1 0-051]0 0.5 1 105 |1
1 1 0.5 1 1.5 1 |-15] 0

Note that the XOR function divides input data set {(0,0),(0,1),(1,0),(1,1)} into two non-
separable sets. In the corresponding MLP, the weights between the input layer and the hidden
layer generates a mapping B? to B? given by (x1,x2) — (¢@(x1 +x2 — 1.5), ¢(x1 + x2 —0.5)). This
mapping maps input data set to {(0,0),(0,1),(1,1)} which can now be divided into separable
sets as per the XOR function. Then the weights in hidden and output layers can give the desired
classification. The weights given here are not generated through any iterative process. These
specific values are used to illustrate the advantage of MLP.

Throughout the 1980s and 1990s, researchers focused on developing and refining the architec-
ture, learning algorithms, and training techniques for MLPs. Various modifications and improve-
ments were proposed to enhance their performance. However, the discovery of the Backpropagation
algorithm by Paul Werbos in 1976 [28] and its independent rediscovery in 1986 by Rumelhart, Hin-
ton and Williams [26] was a major breakthrough for training MLPs. Backpropagation algorithms
are a set of methods used to efficiently train artificial neural networks following a gradient de-
scent approach which exploits the chain rule. This discovery sparked renewed interest in neural
networks.

To get the basic understanding of the Backpropagation algorithm, consider an MLP as in
Figure 7 with 2 neurons in input layer, two neurons in the hidden layer, 1 neuron in output layer
and biases for hidden and output layers. Let the activation function for the neurons in the hidden
and the output layers be the Sigmoid function f(t) = 1/(1+e™*) and let 7 in [0,1] denote a
learning rate. The neurons in input layer transfer the inputs to the hidden layer neurons without
any modifications. Since the sigmoid function is smooth, it is possible to apply backpropagation
algorithm to train the network. This process requires availability of training data consisting of
input patterns (xq,x2) with corresponding desired output y. Let vector ¥ = (xo, x1,x2), where
xo = —1 and a vector h = (hg, h1, o), where hy, hy are outputs at the hidden layer and hyg = —1.
As shown in the figure 7, weights connecting it" input neuron to jth hidden layer neuron are denoted
by wjj, for i,j = 1,2 and weights connecting hidden layer neurons to output neuron by vy, v;. The
biases for hidden nodes are denoted by wp;, j = 1,2 and the bias to the output node is denoted
by vo. Let vectors @; = (woj, w1j, wo;), for j = 1,2 and & = (vg,v1,v2). In the forward pass we
compute hj = f(hy ), where h;, j = @;.%, for j = 1,2 and estimated value of y as ye = f(Yin),
where y;, = 0.h. Then the square error E = %(y —1,)?. For each 1/O pair (x1,x2), and v, the
weights are modified in the backward pass so as to minimize the error E using the steepest decent
criteria as follows:

JE dye dyiy e Vin '
I (Ee e

oE
vj(new) = vj+17871j =vj+1
=0 — 11y — Ye)ye(1 —ye)hj, j=0,1,2

AE 3ye din
aye ayin 8wl~j’

JE
wij(new) = wij + 15— = wij +1] i=0,1,2andj=1,2
1

= wij — (Y — Ye)Ye(1 = Ye)0if (hin j)xi,i = 0,1,2 and j = 1,2;
= wij — 1Y — Ye)ye(1 — ye)vjhj(1 — hj)x;,i = 0,1,2 and j = 1,2;
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Here, (¥ — Ye)Ye(1 —ye)v; can be regarded as error (y — y.) computed at the output node scaled
by slope y.(1 — y.) of the signal passed from the jth hidden layer neuron to the output node, which
is backpropagated to a jth hidden layer neuron through the corresponding weight v;.

Thus, the MLP is trained using training data set until the error is below the tolerance limit.
After the training process is over, the MLP is assumed to have captured the inherent dynamics in
the training data. Then the trained network can be used to predict a reasonable output for unseen
inputs.

Note that the Perceptron learning rule, Delta rule and Backpropagation learning rule are
examples of Supervised Learning Algorithms since those procedures depend upon training patterns
with output class label. And the Hebbian rule illustrates an Unsupervised Learning Algorithm.

Other notable unsupervised learning algorithms are (i) Autoencoders (ii) Restricted Boltzmann
Machines (RBMs) (iii) Kohonen Self-Organizing Maps (SOMs) (iv) Generative Adversarial Net-
works (GANSs) (v) Deep Boltzmann Machines (DBMs) etc. These unsupervised learning methods
for ANNs enable the discovery of patterns, structures, and representations in the input data and
have wide applications in various domains. Discussion of these learning rules is beyond the scope
of this article.

1.4 DEEP NEURAL NETWORKS AND DEEP LEARNING

While for ANNs discussed above, it is possible to solve easy mathematical questions, and computer
problems, including basic gate structures with their respective truth tables, it is tough for these
networks to solve complicated image processing, computer vision, and natural language processing
tasks. For these problems, we utilize deep neural networks, which often have a complex hidden
layer structure with a wide variety of different layers, such as a convolutional layer, max-pooling
layer, dense layer, and other unique layers. These additional layers help the model to understand
problems better and provide optimal solutions to complex projects.

1.4.1 Beginnings of Deep Networks

The 1990s saw advancements in MLPs with the development of more efficient training algorithms
and the exploration of different architectures. One notable architecture is the LeNet-5, developed
by Yann LeCun [19] and his colleagues in the early 1990s. LeNet-5 was designed specifically for
handwritten digit recognition and played a crucial role in advancing the field of convolutional
neural networks (CNNs).

LeNet-5 consisted of seven layers (see Figure 8), including convolutional layers, pooling layers,
and fully connected layers. It demonstrated the power of deep learning in achieving high accuracy
on challenging tasks. LeNet-5 pioneered the use of convolutional operations, weight sharing, and
pooling, which are now fundamental components of modern CNN architectures.

Though LeNet-5 had many features of DNN, it is still referred to as an MLP. The first recognized
deep neural network (DNN) is considered to be the AlexNet model, developed by Alex Krizhevsky,
Ilya Sutskever, and Geoffrey Hinton [1§], which won the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) in 2012. AlexNet is a deep convolutional neural network architecture that
achieved a significant breakthrough in the field of computer vision and demonstrated the power of
deep learning. The AlexNet consisted of 8 layers (see Figure 9).

These developments led to the exploration of more complex network architectures, theintro-
duction of additional techniques such as regularization and dropout, and the application of neural
networks to a wide range of fields, including computer vision, natural language processing, and
speech recognition.

Most of the deep neural network architectures that have been successful are based on either Con-
volutional Neural Networks (CNN) or Recurrent Neural Networks (RNN) methodologies. CNNs
are well-suited for tasks that involve processing spatial data, such as images and videos. RNNs
are well-suited for tasks that involve processing sequential data, such as text and speech.
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Figure 9: The 8 layers of AlexNet (See [@})

Vv
Output: 1 of 10 classes

Figure 8: The 7 layers of LeNet-5 (See [@])

1.4.2 Convolutional Neural Networks

CNNs are a type of deep learning architecture designed for processing structured grid-like data,
primarily used for tasks involving visual data such as images or videos. CNNs are composed of
multiple layers of convolutional and pooling operations.

Convolutional Layers: Convolutional Layers are the fundamental building blocks of CNNs. They
perform the convolution operation, which involves sliding a small window called a kernel or filter
over the input data and computing element-
wise multiplications and summations. FEach
convolutional layer consists of multiple filters,
and each filter learns to detect a specific fea-
ture or pattern. The output of a convolutional
layer is often referred to as feature maps or ac-

Inputs Convl Pooll Conv2 Pool2 Dense Outputs

tivation maps.

Pooling Layers: Pooling Layers are used

in CNNs to reduce the spatial dimensionality
of the feature maps generated by the convolu-
tional layers. The most commonly used pooling operation is max pooling, where the input feature
map is divided into non-overlapping regions, and the maximum value within each region is re-
tained. This down sampling operation reduces the computational burden and makes the learned
features more robust to small spatial translations or distortions. The pooling layers are typically
inserted between consecutive convolutional layers to progressively reduce the spatial dimensions
of the feature maps while retaining the most important features.
Fully connected (Dense) layers: The cascade of alternating convolutional and pooling layers in a
CNN is followed by several fully connected layers in which every neuron in one layer connects to
every neuron in the next layer, similar to a traditional neural network. They take the high-level
features extracted by the earlier layers and use them to make predictions or classifications.

Some examples of successful deep neural network architectures that are based on CNNs are:
(i) AlexNet (ii) VGGNet and (iii) ResNet.

Figure 10: A Convolutional Neural Network

1.4.3 Recurrent Neural Networks

RNNs are a type of neural network that excel in processing sequential data due to their ability to
capture temporal dependencies. The structure of an RNN involves recurrent connections, creating
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a loop that allows information to persist over time. This enables the network to analyze input
sequences step by step, incorporating contextual information from previous steps. Variants such
as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs) further enhance RNNs
by addressing the vanishing gradient problem and introducing gating mechanisms to regulate
information flow.

RNNs are particularly well-suited for tasks in-
volving language modeling and generation. Their
sequential nature allows them to capture the intri-
cate patterns and dependencies present in natural
language data. In large language models, RNNs are
often used in a stacked or deep architecture, enabling
the learning of hierarchical representations and cap-
Hidden Laer 1 Hidden Layer 2 turing both low-level and high-level features. Train-
nput Layer ing RNNs involves techniques like Backpropagation
Through Time (BPTT), which extends the standard
backpropagation algorithm to handle recurrent con-
nections and learn from temporal dependencies.

RNNs have revolutionized the field of language modelling by providing a powerful framework
for understanding and generating sequences of variable length. Their recurrent connections and
variants like LSTM and GRU enable the modelling of long-term dependencies, making them in-
strumental in the development of large language models and applications such as text generation,
language translation, and dialogue systems.

Some examples of successful deep neural network architectures that are based on RNNs are:
(i) LSTM: Long Short Term Memory, (ii) GRU: Gated Recurrent Unit and (iii) Transformer.

The T in the famous Generative Pre-trained Transformer (GPT) series GPT-1, GPT-2, GPT-3
and GPT- 4 stands for Transformer and such systems are called Large Language Models (LLMs).

Output Laver

Figure 11: A simple Recurrent Neural Network

1.4.4 Fuactors contributing to the success of DNN

The development of DNNs really took off in the 2010s, with the introduction of new deep learning
frameworks, and advancement in computing technology. Here are some of the key factors which
are contributing to the success of DNN in accomplishing wide variety of Al tasks:

(i) Development of Learning Algorithms, tools and Libraries: The development of the backprop-
agation algorithm in the 1980s and Deep reinforcement learning algorithm (DRL) in early
2010s have made it possible to train DNN with large number of hidden layers. DeepMind’s
AlphaGo, AlphaFold and AlphaTensor systems which use DRL, have recently demonstrated
capabilities of attacking difficult problems like playing games, medical diagnosis, financial
trading, the Protein Folding Problem and discovering novel Matrix Multiplication Algo-
rithms.

Building DNNs from scratch is time-consuming and requires enormous effort. To make deep
learning simpler, several tools and libraries have been developed to yield an effective deep
neural network model capable of solving complex problems with a few lines of code.

The most popular deep learning libraries and tools utilized for constructing deep neural
networks are TensorFlow, Keras, and PyTorch.

(ii) The availability of large datasets: Data is the most critical component in constructing a
highly accurate DNN model. During training, the model might also encounter issues such as
underfitting or overfitting. Underfitting usually occurs due to a lack of data, while overfitting
is a more prominent issue that occurs due to training data consistently improving while
the test data remains constant. Hence, the training accuracy is high, but the validation
accuracy is low, leading to a highly unstable model that does not yield the best results. These
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data requirements are now fulfilled due to availability of large datasets in open domain and
development of data augmentation techniques.

(iii) The availability of more powerful computational resources: Apart from a large amount of
data, one must also consider the high computational cost/time of computing using the deep
neural network. For example, Models like the Generative Pre-trained Transformer 3 (GPT-
3) have 175 billion parameters, the original AlphaGo used a 120-layer deep convolutional
neural network with 30 million parameters and the latest AlphaTensor system can use deep
neural networks with up to 100,000 layers and billions of parameters. The compilation
and training of models for complex tasks have become possible because of availability of
resourceful Graphics processing units (GPU). Models can often be trained more efficiently
on GPUs or Tensor processing units (TPU) rather than CPUs. Even with these resources,
many Al tasks require number of days/weeks to yield satisfactory results.

1.4.5 The Mathematics of ANN and DNN

In general, most of the advanced technologies have good amount of mathematical theory backing
them. The mathematical theories discussing the capabilities of ANN may be traced back to the
Cover’s Theorem in 1965 [§].

Cover’s theorem states that any continuous function on a compact subset of Euclidean space
can be uniformly approximated by a two-layer feedforward neural network with a single hidden
layer having a finite number of hidden units. Cover’s theorem is a fundamental result in the theory
of neural networks.

Cover’s theorem was extended in 1989 by Cybenko [9] for networks with three hidden layers
and in 1991 by Hornik [16] for multilayer networks provided that the activation functions of the
hidden units are non-linear.

These theorems provide a theoretical foundation for the use of deep neural networks (DNNs)
for a wide variety of tasks. DNNs have been shown to be very effective at learning complex
relationships between the inputs and outputs, and they have been used to achieve state-of-the-art
results on tasks, such as image recognition, natural language processing, and machine translation.

It is important to note that the theorems on the universal approximation capability of ANNs
do not provide any guarantees about the number of hidden units or the depth of the network that
is required to approximate a given function. In practice, it is often necessary to experiment with
different network architectures and hyperparameters to find a network that is able to accurately
approximate the desired function.

There are still many open questions about the capabilities of ANNs and DNNs. For example,
it is not fully understood why DNNs are able to learn complex relationships between the inputs
and outputs so effectively. Additionally, it is not fully understood how the depth of the network
affects its ability to learn complex relationships and the role of data in learning.

The mathematical theory of deep learning and deep neural networks is still in its infancy.
Some of the reasons why developing a complete mathematical theory for deep learning has been
challenging are :

1. Complexity of Networks: Deep neural networks can have millions or even billions of pa-
rameters, and the interactions between these parameters can be highly non-linear. This
complexity makes it difficult to derive closed-form mathematical solutions.

2. Non-Convex Optimization: Training deep neural networks involves solving nonconvex opti-
mization problems, which are notoriously challenging. This means that there can be many
local minima, and finding the global minimum (optimal solution) is often not guaranteed.

3. Data Dependence: Deep learning’s performance is highly dependent on the quantity and
quality of training data. The theoretical underpinnings of how data affects learning and
generalization are still an active area of research.
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4. Architecture Variability: There are numerous neural network architectures, each with its own
set of hyperparameters and characteristics. Developing a unified theory that encompasses
all possible architectures is a formidable task.

5. Empirical Nature: Many advancements in deep learning have been driven by empirical ex-
perimentation and engineering rather than theoretical breakthroughs. This has made it
challenging to develop a purely theoretical framework.

While there may not be a complete, all-encompassing mathematical theory for deep learning
yet, significant progress has been made in understanding various aspects of deep neural networks.
Researchers have made strides in areas such as optimization algorithms, generalization, adversarial
robustness, and transfer learning. Additionally, there are mathematical frameworks that describe
specific aspects of deep learning, such as the theory of overparameterization and the study of neural
network expressiveness.

It’s important to note that the absence of a complete mathematical theory does not diminish
the practical value and impact of deep learning. Deep learning has proven to be highly effective in
a wide range of applications, and researchers continue to make important advancements in both
theory and practice. The development of a comprehensive mathematical theory for deep learning
is an ongoing and complex research endeavour, and it may take more time to achieve a complete
understanding of this transformative technology.

1.5 IMPACT OF COMPUTERS ON MATHEMATICS/SCIENTIFIC RESEARCH

Human beings have been using various devices to aid computation since ancient times. These de-
vices may be physical like the Abacus, Pascaline, Napier’s Bones, Slide Rule, Electrical calculators
and Computers or these devices may be algorithms like the Sulvasutra procedure for computing
square root of 2 or Euclid’s algorithm or the Decimal Calculation methods or the modern computer
programs. It seems that mainstream mathematics was not affected intimately by these devices
until recent times. But in the past few decades, we are seeing instances of use of digital computers
in mathematical discovery. The following are a few mathematical results that have been partially
or completely proved using mathematical insight and computational resources including Al sys-
tems. Apart from these specific results, there are many instances of extensive use of computers in
resolution of mathematical problems. For example, proof of nonexistence of a projective plane of
order 10, solution of the Navier-Stokes equations for a wide range of problems in fluid mechanics,
etc.

1.5.1 The Four Color Map Theorem

Arguably, the first famous case of using the assistance of digital computers in mathematical proofs
was the resolution of the Four Color Map problem. In 1976 Kenneth Appel and Wolfgang Haken [2]
published a two-page proof of the Four Color Map Theorem. The list of all possible configurations
of regions in a map in Appel and Haken’s approach contained 1,936 cases. These cases were
generated by a computer program and it is claimed that any configuration can be reduced to one
of these cases. The proof showed that for each of these cases, it was possible to color the regions
using four colors without any adjacent regions having the same color.

Appel and Haken’s proof was controversial when it was first published. Some mathematicians
argued that the use of a computer made the proof invalid. Appel and Haken presented the details
of their work in 4 papers published in 1977, in the Illinois Journal of Mathematics [B], [4], [b] and [6]
totaling 263 pages. However, the proof has since been accepted by the mathematical community,
and it is now considered to be a major achievement in mathematics.
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1.5.2 The Kepler conjecture

This conjecture was first proposed by Johannes Kepler in 1611, which states that no arrangement of
equally sized spheres filling space has a greater average density than that of the cubic close packing
(face-centred cubic) and hexagonal close packing arrangements. The density of these arrangements
is around 74.05%.

Thomas Hales [[13] proved the Kepler conjecture in 1998 using a proof by exhaustion involving
the checking of 12,000 cases. Each case is a configuration of spheres that could potentially have a
higher density than the cubic close packing. Hales used a computer to check each case and showed
that none of them had a higher density.

Hales’ proof was not without controversy. Some mathematicians argued that the use of com-
puters in the proof made it invalid. However, the vast majority of mathematicians accepted the
proof.

In 2014, the Flyspeck project team, headed by Hales, announced the completion of a formal
proof of the Kepler conjecture using a combination of the Isabelle and HOL Light proof assistants
[10]. This formal proof was accepted by the journal Forum of Mathematics, Pi in 2017.

The formal proof of the Kepler conjecture is a major achievement in the field of mathematics.
It affirms that it is possible to use computers to verify complex mathematical proofs, and it opens
up the possibility of formalizing other mathematical proofs.

1.5.3 The classification of finite simple groups

The classification of finite simple groups is one of the most important and significant results in
modern mathematics. It states that there are only 18 infinite families of finite simple groups, and
26 sporadic groups. (See [[7], [11], [12], [14]).

The classification was completed in the 1980s by a team of mathematicians led by Robert
Griess, John Conway, and Martin Gardner. The proof is over 15,000 pages long and uses a wide
range of mathematical techniques, including group theory, representation theory, and algebraic
geometry.

Computers were used extensively in the proof of the classification of finite simple groups. For
example, computers were used to check the hundreds of cases that were involved in the proof.
Computers were also used to develop new mathematical tools that were needed for the proof.

One of the most important computer-assisted proofs in the classification of finite simple groups
is the proof of the Feit-Thompson theorem which states that every finite group of odd order is
solvable.

This theorem was a major breakthrough in the classification, and it allowed the mathematicians
to focus on groups of even order.

Another important computer-assisted proof is the proof of the classification of 2-transitive
groups. 2-transitive groups are groups that act transitively on ordered pairs of elements of some
set in a faithful manner. The classification of 2-transitive groups was a difficult problem, and it
required the development of new mathematical tools.

Computers have played a vital role in the proof of the classification of finite simple groups.

1.5.4 The Protein Folding Problem

The protein folding problem [20] in Mathematical Biology refers to the challenge of understanding
and predicting how a protein molecule acquires its unique three-dimensional structure, known
as its folded conformation, from its linear sequence of amino acids. Proteins are fundamental
biomolecules that perform a wide range of functions in living organisms, and their function is
intricately tied to their structure.

AlphaFold is able to predict the structure of proteins [17], [22] with a high degree of accuracy
in a wide variety of environments. This is a major breakthrough, as it will allow researchers to
study the structure and function of proteins in much greater detail. AlphaFold was able to predict
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the structure of the SARS-CoV-2 virus which was critical to the development of vaccines and
treatments for COVID-19.

AlphaFold has the potential to revolutionize many areas of biology and medicine. For example,
it could be used to design new drugs that target specific proteins, or to develop new treatments
for diseases caused by protein misfolding.

Apart from these problems, one of the major developments in 2022, which has inspired authors

to write this article, was the use of Al system AlphaTensor for auto generation of Matrix multipli-
cation algorithms which are faster than best known algorithms in the literature. We will discuss
this auto generation process along with the account of various matrix multiplication algorithms
available in the literature, in the second part of this article.
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2. In Conversation with the Number Theorist-
R. Balasubramanian

Amritha Varrier, Athira K., Adwaitha M. S.,(Final year M. Sc. Mathematics)
Ambat Vijayakumar, Emeritus Professor (vambat@gmail.com). Department of Mathematics,
Cochin University of Science and Technology, Cochin.

Professor Ramachandran Balasubramanian (aka Balu in the closer circles), a renowned number
theorist and a former Director of The Institute of Mathematical Sciences, Chennai visited CUSAT
recently.

He is a recipient of the Shanti Swarup Bhatnagar Prize for Science and Technology in 1990.

The French government’s Ordre National du M erite for “furthering Indo-French cooperation in
the field of Mathematics” in 2003.

The Padma Shri in 2006 and The Lifetime Achievement Award of The Department of Atomic
Energy, awarded by Dr. Manmohan Singh, the former Prime Minister of India in 2013.

He is also an inaugural class of Fellow of the American Mathematical Society in 2012.

Prof. Balasubramanian receiving Padma Shri Prof. Balasubramanian with the
from Dr. APJ Abdul Kalam students

Prof. Balasubramanian unassumingly spared a few minutes to answer the following questions on
his mentors, research etc.

1. What were your memories from school or college related to mathematics? How did you realize
Mathematics is your way?

* I never decided mathematics was my way. I grew up in a village and nobody around me knew
much about research or anything. But I liked mathematics. The teachers I had in high school
were passionate about imparting whatever knowledge they had and creating enthusiasm among
students for mathematics. Then I continued mathematics through college, but I had no clear idea
about research. I studied at A. V. V. M. Sri Pushpam College, Poondi, Thanjavur district Tamil
Nadu and completed my Master’s there. The aim of every one around me was to clear some
competitive examination and I was one of them. At that time, the HOD was V. Krishnamurthy
who had just moved from Loyola College, Chennai to Sri Pushpam college. Now let me say a few
things about Loyola college. That is the time when the Tata Institute of Fundamental Research
(TIFR) had just started. Many young students from Loyola college had joined TIFR and later
turned out to be top mathematicians (including Professors C. S. Seshadri and M. S. Narasimhan).
Since Professor Krishnamurthy was in Loyla he was aware of TIFR. I remember it was around
1972 May, when I didn’t know much about research, and was busy looking for clearing government
examinations, and one day Prof. Krishnamurthy visited my house. He saw an advertisement for
the Tata Institute and was very sure that I wouldn’t have seen it at all, so with the help of his
friend, he found my address and came to my house. He told me to apply for it and added a good
recommendation letter also. Then I attended the interview and got selected.

2. Could you please comment on the contrast in academic and personal relationships between the
research scholars and their guides as of now compared to the 80s?
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* If you are looking for the interaction between students and the faculty, my knowledge is practically
based upon what I have experienced in my institute. My friends had told me that they learned
more mathematics from their fellow research scholars compared to classrooms or textbooks. The
student seminars and one to one interaction between the graduate students is one best way of
learning. Unfortunately, I now see it is declining.

3. You were a visiting scholar at the Institute of Advanced Studies, Princeton, USA. What was
your experience there like?

* There I could talk to great mathematicians, like Professor A. Selberg (who was awarded the
Fields Medal in 1950 and an honorary Abel Prize in 2002) and E. Bombieri (currently Professor
Emeritus in the School of Mathematics at the Institute for Advanced Study in Princeton, who
won the Fields Medal in 1974). I could befriend many number theorists. In particular I should
mention Prof M. Ram Murty (currently at Queen’s University, Canada) and James Haffner. The
friendship with Ram Murty and his brother Kumar Murty (Currently the Director of the Fields
Institute, Canada) has grown stronger in the subsequent years. Similarly next year, I went to
the University of Illinois where I was fortunate to meet Professors Bruce Berndt (well known for
the ‘Ramanujan Notebooks’) and H. Halberstam (renowned number theorist specialised in Sieve
Theory, who passed away in 2014).

4. You are a great number theorist, how would you explain the beginning of your research? And
the famous Waring’s problem also.

* You cannot always determine your research areas in the beginning. Of course, there are excep-
tions, like I have a friend K. Soundararajan who joined Princeton University for Ph. D. and he
already had some research problems in his mind. But I didn’t have any. My guide Prof. Ra-
machandra was interested in the Riemann zeta function at the time of my joining him, having
established himself as a master in algebraic Number theory and Transcendental number theory
by then. He didn’t give me any specific problems, but just an overview. At that time I started
thinking about problems on my own. I started to explore the zeros of the Riemann zeta function
on the critical line and the mean square estimate of the Riemann zeta function on the critical line.
After I was through with my thesis, he asked me to look at Waring’s problem for biquadrates. I
was able to prove that g(4) is at most 20. I should add here that I was relying on some calculations
which was done by earlier researchers on this problem and it turned out that the calculations
needed some modifications (as pointed out later by my coauthor). Around that time, Professor
Ramachandra went abroad and met Professor Deshouillers who was also working in the problem
along with Professor Dress (both are currently Professors at the University of Bordeaux, France).
But we were working on different lemmas with different lines of thought. Professor Deshouillers
realized that we can get the final result by combining both of our approaches.

5. You are a recipient of so many awards like the Padma Shri. Has it made a difference in your
life?

* The day I received the Padma Shri and the previous day when I did not have it, I do not feel
much difference. I am happy to have gotten the Padma Shri. I am even happier because I got it
from Dr. A. P. J. Abdul Kalam. In fact, I knew him already because
both of us were interested in cryptology. His acquaintance is the one I
still cherish.

6. Do you consider anybody as your mentor or guru?

* I had so many good teachers in my school and college. If I have to
rank them, then V. Krishnamurthy who was my teacher in Sri Pushpam
college will get a high rank. I should add that I owe all my success to
Professor K. Ramachandra. He was not only my teacher, he treated me
as his own son.

Prof. K Ramachandra 7 yWhat are your hobbies other than mathematics?
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2. In Conversation with the Number Theorist- R. Balasubramanian

* Like everyone else, I used to listen to music and read fiction and non-fiction. I used to play
Bridge, a card game. When I became the Director of IMSC, I had to stop it and now after retiring,
I am planning to start again.

8. How was your experience in IMSC?

* My experience at IMSC has been wonderful. First of all, there are many advantages of being in
a small Institute. Being an institute funded by DAE, we never had any serious issues with funding.
I should say I was lucky in many respects during my tenure as the Director. First is the unstinted
support I got from the chairmen of DAE at various times (I should thankfully remember Dr. R.
Chidambaram, Dr. Anil Kakodkar and Dr. Srikumar Banerji in this connection) and the Joint
Secretaries (like Mrs Sudha Bhave). The second is the support and the confidence I enjoyed from
the Governing Council, in particular the chairman Dr. S. K. Joshi. I was fortunate to inherit a
cohesive group of faculty (with absolutely no internal dissensions) from my predecessor Professor
Ramachandran. The institute also had been fortunate to have good Registrars (Mr. Manja, Mr.
Vishnu Prasad) who took care of most of the administration and the rest by the efficient P.As,
Mrs. Indra and Mrs. Vidyalakshmi.

9. What is your perception of the role of mathematicians in our society? What advice would you
like to give to young mathematicians?

* What I say will have so many exceptions, for a person who just started research, it is hard to
know how difficult a problem is. At that time you have to consult your guide and he will tell
you which one is easy or which one is difficult or which one is not so easy and not so difficult.
Scholarship is a must to attack good problems. This is true of even Ramanujan, contrary to
popular myth. And none of us is a Ramanujan. So you should go to your guide and ask for the
materials needed to attack the problem and only after mastering it, you will have an idea. It is
also possible when your teacher gives a problem and while reading the relevant materials you come
up with another problem that is more appealing to you than the original one. For research, you
should have adequate knowledge. You may not start your research on day 1 or day 100 but maybe
you can start on day 181.

10. We know that your Erdés number is 2. How was your experience of communicating with
Erdos?

* As you know, the Erdés number describes the ‘collaborative distance’ between the Hungarian
mathematician Paul Erdos and another person, as measured by authorship of mathematical papers.
An author who has directly collaborated with Erdos has an Erdés number 1. The people who have
collaborated with them have Erdés number 2. I have met professor Erdds, once in TIFR and many
times during my visits abroad and have discussed with him. I have also corresponded with him,
but it is rare.

11. Can you please enlighten us on the famous Balu-Koblitz theorem?

* Professor Neal Koblitz of University of Washington visited IMSc a few years back and gave a
course of lectures. We became close after the visit (even we went for a movie). Later, I met him
in Bangalore in a conference on cryptology. In this lecture, he explained his result on the field of
definition of Weil pairing of an elliptic curve. He suggested that the result should have an impact
on Menezes Okamoto Vanstone (MOV) algorithm for attacking elliptic curve cryptosystems. After
the lecture, we were walking towards the guest house for lunch. During the walk and during the
lunch, we discussed about MOV and we realised that his result on the field of definition of “Weil
pairing’ (a bilinear form, though with multiplicative notation, on the points of order dividing n of
an elliptic curve E, taking values in nth roots of unity) in fact, proves that the MOV is not sub
exponential in general. Rather surprisingly it turned to be one of my well cited papers.

12. In your long academic career, you would have come across many young math aspirants. Any
one you still remember?
* I am happy that I have played some role in the future of many young aspirants. The most
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prominent is Kannan Soundarajan (recipient of several international recognitions including the
Infosys Prize (2011) is currently at the Stanford University). Also many students from Chennai
Mathematical Institute attended my course on Number theory and a lot of them did Ph.D. in
Number theory.

13. About your family?

* I am married to Lakshmi. I have a son and a daughter. My son Ravi is working in Qualcomm
in Sandiego. Daughter Aruna and our son in law Niranjan teach computer science in Stonybrook
university. So far we have one granddaughter through Aruna.

Waring’s Problem

Waring’s problem: Whether each natural number k has an associated positive integer s such
that every natural number is the sum of at most s natural numbers raised to the power k.
For example, every natural number is the sum of at most 4 squares, 9 cubes, or 19 fourth
powers. Waring’s problem was proposed in 1770 by Edward Waring FRS (1736 - 1798) who
was a British mathematician after whom it is named. Its affirmative answer, known as the
Hilbert-Waring theorem, was provided by the celebrated mathematician David Hilbert in
1909.

For every k, let g(k) denote the minimum number s of k-th powers of naturals needed to
represent all positive integers. Every positive integer is the sum of one first power, itself,
so g(1) = 1. Some simple computations show that 7 requires 4 squares, 23 requires 9
cubes, and 79 requires 19 fourth powers; these examples show that ¢(2) >4, ¢(3) > 9 and
g(4) > 19. Waring conjectured that these lower bounds were in fact exact values.
Lagrange’s four-square theorem of 1770 states that every natural number is the sum of
at most four squares. Since three squares are not enough, this theorem establishes that
g(2) = 4. That g(3) = 9 was established from 1909 to 1912 by Wieferich and A. J.
Kempner, ¢(4) = 19 in 1986 by R. Balasubramanian, F. Dress, and J. M. Deshouillers,
g(5) =37 in 1964 by Chen Jingrun, and g(6) = 73 in 1940 by S. S. Pillai.

goo
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3. What is Happening in the Mathematical World?

Devbhadra V. Shah
Department of Mathematics, VNSGU, Surat; Email: drdvshah@yahoo.com

3.1 CELEBRATING 200" BIRTH ANNIVERSARY OF GOTTHOLD EISENSTEIN

This year marks the 200" birth anniversary of one of the renowned mathe-
maticians Ferdinand Gotthold Max Eisenstein.

Eisenstein was born on April 16, 1823 in Berlin, Germany and made impor-
tant contributions to Number Theory and Analysis. He worked on a variety
of topics including quadratic and cubic forms, the reciprocity theorem for cu-
bic residues, quadratic partition of prime numbers and reciprocity laws. He
proved several results that eluded even Gauss. His name is associated with
various concepts of mathematics, like:

o Eisenstein numbers / primes: The Eisenstein integers, sometimes also called the Eisenstein-
Jacobi integers, are numbers of the form, a + bw where a and b are integers, and w =
%(—1 +i1/3) is a primitive cube-root of 1. The Eisenstein primes are Eisenstein integers
that cannot be written as products of two Eisenstein integers of absolute vale (or equivalent
norm) > 1.

« REisenstein criterion: Consider a polynomial Q(x) = a,x" + a,_1x" "' + -+ + ayx + ag, of
degree n, with integer coefficients. If there exists a prime number p satisfying the following
three conditions (i) p divides each ai for 0 < i < n, (ii) p does not divide a,, and (iii) p?
does not divide ag, then Q is irreducible over the rational numbers.

o FEisenstein series: Eisenstein series are particular modular forms with infinite series expan-
sions that may be written down directly. Originally defined for the modular group as follows:
Let T be a complex number with strictly positive imaginary part, then the holomorphic Eisen-
stein series Goi(T) of weight 2k, where k > 2 is an integer, is ¥, ) e 22— {(0,0)} m This
series absolutely converges to a holomorphic function of T in the upper half-plane. Eisenstein

series can be generalized in the theory of automorphic forms.

His academic advisors were renowned mathematicians like Carl Friedrich Gauss, Peter Gustav
Lejeune Dirichlet, Ernst Kummer and Nikolaus Wolfgang Fischer. Bernhard Riemann was one of
his notable students.

Eisenstein suffered all his life from bad health but at least he survived childhood which none of
his five brothers and sisters succeeded in doing; they all died of meningitis. He showed considerable
talent for music from a young age and played the piano and composed music throughout his life.

At the age of seventeen, when he was still at school, he began to attend lectures by Dirichlet
and other mathematicians at the University of Berlin. He wrote in his autobiography about the
reasons that he was so attracted to mathematics:

“What attracted me so strongly and exclusively to mathematics, apart from the actual content,
was particularly the specific nature of the mental processes by which mathematical concepts are
handled. This way of deducing and discovering new truths from old ones, and the extraordinary
clarity and self-evidence of the theorems, the ingeniousness of the ideas ...had an irresistible fasci-
nation for me. Beginning from the individual theorems, I grew accustomed to delve more deeply
into their relationships and to grasp whole theories as a single entity. That is how I conceived the
idea of mathematical beauty ...”

In 1843, Eisenstein entered the Friedrich Wilhelm University and in the following year, he
published several papers and 2 problems in the reputable Crelle’s journal.

In February 1845, Eisenstein received an honorary Doctorate from the University of Breslau.
He became a professor of mathematics at Berlin in 1847 and was elected to the Royal Prussian
Academy of Sciences and Humanities.
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In 1848, Eisenstein was imprisoned by the Prussian army for his revolutionary activities. After
his arrest, he was ill-treated. The harsh treatment he received had a bad effect on his delicate
health.

Despite his health, Eisenstein continued writing papers on quadratic partitions of prime num-
bers and the reciprocity laws. Gauss proposed him for election to the Gottingen Academy and he
was elected in 1851. Early in 1852, at Dirichlet’s request, he was elected to the Berlin Academy.

Eisenstein’s work continued till his death, totaling 40 mathematical articles and more than 700
printed pages. He died of tuberculosis, on Oct. 11, 1852 in Berlin, when he was only 29 years old.
Like Galois and Abel before him, Eisenstein died before the age of 30.

Sources:

1. https://mathworld.wolfram.com/EisensteinInteger.htmi
2. https://en.wikipedia.orqg/wiki/Eisenstein%27s _criterion
3. https://en.wikipedia.orqg/wiki/Fisenstein__series

3.2 MAJOR PROGRESS TOWARDS THE KAKEYA CONJECTURE

A new proof marks major progress toward solving the Kakeya conjecture, a simple question that
formed the base of a hierarchy (a tower) of three conjectures namely, “restriction” conjecture,
Bochner-Riesz conjecture and at the very top sits the local smoothing conjecture. Since each
statement in the hierarchy implies the one below it, if the Kakeya conjecture is false, none of the
other conjectures are true. The entire tower will come crashing down.

In 1917, the Japanese mathematician Soichi Kakeya posed a following problem: What is the
smallest amount of area required to continuously rotate a unit line segment (an infinitely thin
needle) in the plane by a full rotation?

If you simply spin the needle around its center, you will get a circle of
radius 1/2, which has an area 7/4. But it is possible to move the needle
in innovative ways, so that you sweep a much smaller amount of area. It is
possible to rotate the needle using a “three-point U-turn” inside a deltoid
which has an area 71/8. Observe that at every stage of its rotation (except
when an endpoint is at a cusp of the deltoid), the needle is in contact with
the deltoid at three points: two endpoints and one tangent point.

In 1928, Besicovitch proved that one could in fact rotate a needle in arbi-

Figure 1 trary small amounts of area. The proof relied on two observations. (i) First,

one could translate a needle by any distance using as little area as one pleased

(ii) one could find sets of arbitrarily small area that contained line segments (or thin triangles or
rectangles) in every direction.

This led to the definition of a Kakeya set in IR” to be a set which contained a unit line segment
in every direction. Besicovitch’s construction showed that Kakeya sets in IR? could have arbitrarily
small measure; in fact, one can construct Kakeya sets which have Lebesgue measure zero. While
they know that such sets can be small in terms of area (or volume when needles are arranged in
three or more dimensions), they believe the sets must always be large if their size is measured by
the Hausdorff dimension or the Minkowski dimension.

Kakeya set conjecture: A Kakeya set in IR” has Hausdorff and Minkowski dimension 7.

In fractal geometry, Minkowski dimension is a way of determining the fractal dimension of a set
S in a Eucliden space R", or more generally in a metric space (X,d). It is named after the Polish
mathematician Hermann Minkowski. Suppose that N(e) is the number of boxes of side length ¢

required to cover the set. Then the Minkowski dimension is defined as lirr(} lloo ‘i;g i\lj/(e)).
e— ¢

Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was
introduced in 1918 by mathematician Felix Hausdorff. To formally define the Hausdorff dimension
we first define the d-dimensional Hausdorff outer measure as follows:
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Let X be a metric space. If S C X and d € [0 o0), HY(S) = inf{¥, (diamU;)?| U2, U; D

S, diam U; < ¢}, where infimum is taken overall countable covers U of S. The Hausdorff d-

dimensional outer measure is then defined as H%(S) = (lsirrs) HZ(S). And the restriction of the
—

mapping to measurable sets justifies it as a measure, called the d-dimensional Hausdorfl Measure.
The Hausdorff dimension diamH (X) of X is defined as inf {d > 0|H%(X) = 0}.

The Kakeya conjecture was solved for n = 2 by Davies in 1971, but remained open for n > 3.
While it is apparently a simple question about needles, the geometry of these Kakeya sets uncovered
surprising connections to partial differential equations, harmonic analysis, number theory and even
physics.

In 1995, Thomas Wolff proved that the Minkowski dimension of a Kakeya
set in 3D space has to be at least 2.5. That lower bound turned out to be
difficult to increase. Then, in 1999, the mathematicians Nets Katz, Izabella
Laba and Terence Tao managed to beat it. Their new bound is 2.500000001.
Despite how small the improvement was, it overcame a massive theoretical
barrier. Their paper was published in the Annals of Mathematics. Katz and
Tao later hoped to apply some of the ideas from that work to attack the
3D Kakeya conjecture in a different way. They hypothesized that any coun-

Figure 2 terexample must have three particular properties, and that the coexistence
of those properties must lead to a contradiction. They (along with other mathematicians) could
show that any counterexample must have two of the three properties. It must be “plany”, which
means that whenever line segments intersect at a point, those segments also lie nearly in the same
plane. It must also be “grainy”, which requires that the planes of nearby points of intersection be
similarly oriented. However, they couldn’t prove that all counterexamples must be sticky. In a
“sticky” set, line segments that point in nearly the same direction also have to be located close to
each other in space which in turn force a lot of overlap among the line segments, thereby making
the set as small as possible — precisely what you need to create a counterexample.

Now, mathematicians Joshua Zahl (left) of the University of
British Columbia and Hong Wang (right) of New York University,
have moved the needle, so to speak. Their new proof strikes down
a major obstacle that has stood for decades - renewing hope that a
solution might be in sight.

They started by assuming the existence of a sticky counterexam-
ple with a Minkowski dimension of less than 3. They knew from
previous work that such a counterexample had to be plany and grainy. Now they needed to show
that the plany, grainy and sticky properties played off each other and led to a contradiction, which
would mean that this counterexample couldn’t actually exist.

To get that contradiction, however, Wang and Zahl turned their attention in a direction that
had not been anticipated — toward an area known as projection theory. They used a “stickiness”
to prove that such a paradoxical-sounding set cannot exist - meaning that there are no sticky coun-
terexamples to the Kakeya conjecture. Wang and Zahl’s work strongly suggests that the Kakeya
conjecture is true. While it only applies to the three-dimensional case, some of its techniques might
be useful in higher dimensions also.

Sources:
1. https://www.quantamagazine.orqg/a-tower-of-conjectures-that-rests-upon-a-needle-20230912/

2. https://www.quantamagazine.org/new-proof-threads-the-needle-on-a-sticky-geometry-problem-
20230711/

3. Terence Tao: Recent progress on the Kakeya conjecture, University of California, Los Angeles
4. https://en.wikipedia.orq/wiki/Hausdor{f _dimension
5. hitps://en.wikipedia.org/wiki/Minkowski%FE2%80%93Bouligand__dimension
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3.3 A KEy MOBIUS STRIP PROBLEM, SOLVED AFTER ALMOST 50 YEARS OF
SEARCH

—rr—— A Moébius strip (or band) is both a physical and mathematical object.
~ Mobius strip can be constructed by twisting a simple strip of paper one
’ time and then taping the ends together. Since they were first discovered
back in the mid-1800s, mathematicians have been scratching their heads
trying to determine one simple constraint - how small can you make a
Mobius strip without it intersecting itself? Back in the late 1970s, a
pair of mathematicians, Charles Sidney Weaver and Benjamin Rigler
Halpern, found that the problem could be made simpler by allowing self-
intersections - that changed the problem to one that involved seeking the
minimum amount of strip needed to avoid self-intersections. For nearly fifty years, mathematicians
have puzzled over the misleadingly simple question.

Figure - 1

Now, Richard Schwartz, a mathematician at Brown University, Prov-
idence, Rhode Island has proposed an elegant solution to this problem,
which was originally posed by mathematicians Charles Weaver and Benjamin
Halpern in 1977. In their paper, Halpern and Weaver pose a limit for Mébius
strips based on the familiar geometry of folded bits of solid paper - that the
ratio between the length and width of the paper must be greater than V3,
or around 1.73.

Schwartz had several attempts at solving it over the years and published
a paper in 2021 with a promising approach that ultimately fell short. When
he resumed investigating the problem, he noticed a mistake in a “lemma”-an intermediate result-
involving a “T- pattern” in his previous paper.

The lemma begins with one basic idea: Mobius bands, have straight lines on them, so as to
form a ruled surface. You can imagine drawing these straight lines so that they cut across the
Moébius band and hit the boundary at either end. In his earlier work, Schwartz identified two
straight lines that are perpendicular to each other and also in the same plane, forming a T-pattern
on every Mobius strip.

The next step was to set up and solve an optimization problem that entailed slicing open a
Mobius band at an angle (rather than perpendicular to the boundary) along a line segment that
stretched across the width of the band and considering the resulting shape. For this step, in
Schwartz’s 2021 paper, he incorrectly concluded that this shape was a parallelogram. It’s actually
a trapezoid.

Then with some help from a few colleagues - Schwartz corrected his error and found a really
nice proof for the intermediate step that greatly simplified the paper.

Sources:

1. hitps://www.sciencealert.com/mathematicians-solve-a-key-mbius-strip-problem-after-almost -
50-years-of-searching

2. https://www.scientificamerican.com/article/mathematicians-solve-50-year-old-moebius-strip-
puzzlel /

3.4 Two STUDENTS DISPROVE A WIDELY BELIEVED LOCAL-GLOBAL CONJECTURE

Mathematicians thought they were on the point of proving a conjecture about the ancient structures
known as Apollonian circles. But now a new work reveals it to be false.

About 2,200 years ago, the Greek geometer Apollonius inquired about how circles would fit
together if they all touched each other.

Imagine arranging three coins so that each one touches the others. You can always draw a
circle around them that touches all three from the outside. Then you can start to ask questions:
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How does the size of that bigger circle relate to those of the three coins? What size circle will fit
into the gap between the three coins? And if you start to draw circles that fill in progressively
smaller and smaller gaps between circles - creating a fractal pattern known as a packing - how do
the sizes of those circles relate to one another?

Rather than think about the diameter of these circles, mathe-
maticians use a measure ‘curvature’ - the inverse of the radius.

Renaissance mathematicians proved that if the first four circles
have a curvature that is an integer, the curvatures of all the sub-
2! i /§ sequent circles in the packing are guaranteed to be whole numbers.
P - s _aal That is remarkable on its own. But mathematicians have taken the
problem a step further by asking questions about which integers
show up as the circles get smaller and smaller and the curvatures

Figure 1

get larger and larger.

In 2010, Elena Fuchs, a number theorist now at the University of California, observed that if
you divided each curvature by 24, a rule emerged for the possible remainders. Some packings only
have curvatures with remainders of 0, 1, 4, 9, 12 or 16, for example. Others only leave remainders
of 3, 6, 7, 10, 15, 18, 19 or 22. There were six different possible groups. In other words, curvatures
follow a particular relationship that forces them into certain subsets, modulo 24.

Soon mathematicians became convinced that not only must the curvatures fall into one of the
6 subsets, but also that every possible number in each subset must be represented. This idea came
to be known as the ‘local-global conjecture’.

In 2012, Kontorovich and Jean Bourgain proved that virtually every number predicted by the
conjecture does occur. But “virtually all” does not mean “all”. Mathematicians thought the rare
counterexamples that remained possible after Kontorovich and Bourgain’s paper did not actually
exist, mostly because the two or three most well-studied circle packings seemed to follow the local-
global conjecture so well.

Now, Summer Haag and Clyde Kertzer along-
with their number theorist supervisor Katherine
Stange (from left to right) from the University of
Colorado, Boulder, US proved the conjecture to be
false.

Haag and Kertzer clustered around charts that
demonstrated how a few buckets seemed to be miss-
ing certain numbers. Numbers they expected to appear never did. They proved that the pattern
they observed continues indefinitely, disproving the conjecture.

The proof centers on a centuries-old principle called quadratic reciprocity which arises from
certain indirect factorization patterns involving perfect square numbers. Stange’s team discovered
how reciprocity applies to circle packings. It explains why certain curvatures cannot be tangent
to each other.

Source: https://www.quantamaqazine.orq/two-students-unravel-a-widely-believed-math-conjecture-
20230810/ ?mc__cid=d0ada5007c&me__eid=df6d259ch7

3.5 UNEXPECTED LINK BETWEEN NUMBER THEORY AND GENETICS DISCOVERED

Number theory, the study of the properties of integers, is perhaps the purest form of mathematics.
At first sight, it may seem far too abstract to apply to the natural world. And yet, again and
again, number theory finds unexpected applications in science and engineering, from leaf angles
that (almost) universally follow the Fibonacci sequence, to modern encryption techniques based
on factoring prime numbers.

Now, an interdisciplinary team of mathematicians, engineers, physicists, and medical scientists
have uncovered an unexpected link between Number Theory and Evolutionary Genetics, that
exposes key insights into the structure of neutral mutations and the evolution of organisms.


https://www.quantamagazine.org/two-students-unravel-a-widely-believed-math-conjecture- 20230810/?mc_cid=d0ada5007c&mc_eid=df6d259cb7
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Specifically, the team of researchers (from Oxford, Harvard, Cambridge, GUST, MIT, Imperial,
and the Alan Turing Institute) lead by Vaibhav Mohanty (Harvard Medical School) have discovered
a deep connection between the sums-of-digits function Sy (1), (defined as the sum of the digits of
a natural number 7 in base k) from number theory and a key quantity in genetics, the phenotype
mutational robustness which is defined as the average probability that a point mutation does not
change a phenotype (a characteristic of an organism).

The discovery may have important implications for evolutionary genetics. Many genetic mu-
tations are neutral, meaning that they can slowly accumulate over time without affecting the
viability of the phenotype. These neutral mutations cause genome sequences to change at a steady
rate over time. Because this rate is known, scientists can compare the percentage difference in the
sequence between two organisms and infer when their latest common ancestor lived.

But the existence of these neutral mutations posed an important question: What fraction of
mutations to a sequence is neutral? This property, called the phenotype mutational robustness,
defines the average amount of mutations that can occur across all sequences without affecting the
phenotype.

It is precisely this question that the team has answered. They proved that the maximum
robustness is proportional to the logarithm of the fraction of all possible sequences that map to a
phenotype, with a correction which is given by the sums of digits function Si(n).

Another surprise was that the maximum robustness also turns out to be related to the famous
Takagi function, a strange function that is continuous everywhere, but differentiable nowhere. This
fractal function is also called the blancmange curve, because it looks like the French dessert.

What is most surprising is that the team found clear evidence in the mapping from sequences
to RNA secondary structures that nature in some cases achieves the exact maximum robustness
bound. It is as if biology knows about the fractal sums-of-digits function. This study will help to
find many fascinating new links between number theory and genetics.

Source: https://www.news-medical.net/news/20230808/Unexpected-link-between-pure-mathematics-
and- genetics-discovered.aspx

3.6 NEwW ESTIMATE OF THE SIZE OF TRIANGLES CREATED BY PACKING POINTS
INTO A SQUARE

A new proof breaks a decades-long drought of progress on the problem of estimating the size of
triangles created by packing points into a square.

Consider a square with a bunch of points inside. Take three of those points, and you can make
a triangle. Four points define four different triangles. Ten points define 120 triangles. The numbers
grow quickly from there - 100 points define 1,61,700 different triangles. Each of those triangles, of
course, has a particular area.

Hans Heilbronn, a German mathematician thought of these triangles in the late 1940s when he
saw a group of soldiers outside his window. The soldiers did not appear to be in formation, which
got him thinking: If there are n soldiers inside a square, how large can the smallest triangle be, for
a chosen arrangement? Heilbronn wondered how one might go about arranging the soldiers (or,
for mathematical simplicity, points) to maximize the size of the smallest triangle. By placing three
points very close together, you can easily make the smallest triangle in an arrangement arbitrarily
small. But trying to keep the smallest triangle big, is trickier. As you keep adding in more dots,
the smallest triangle is forced to be pretty small - new dots can only be so far from existing ones.
It is relatively easy to show that the smallest triangle can’t have an area any bigger than 1/ (n — 2)
by splitting the square into nonoverlapping triangles, n being the number of points.

But Heilbronn thought that the limit was even tinier than that. He guessed that no matter
how the dots were arranged in the square, there could not be a smallest triangle with an area
larger than around 1/#2, a number which shrinks much faster as n grows.

In 1980, the Hungarian mathematicians Janos Komlés, Janos Pintz and Endre Szemerédi found
a pattern of dots whose smallest triangle had an area ever so slightly larger than 1/n?, proving

n 26 60
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Heilbronn wrong. In a separate paper published around the same time, they also showed that it
is impossible to arrange n dots to create a smallest triangle that is bigger than around 1/n%/7.
When 7 is large, this is much smaller than 1/#, but much bigger than 1/n2.

The problem is simple to state, but progress on the Heilbronn triangle problem, as it came to
be called, has been halting, and results dried up entirely in the 1980s. Researchers kept working on
the Heilbronn triangle problem over the years, despite the long wait for progress, motivated by its
several links with other areas of mathematics. It is closely related to problems about intersecting
shapes, which in turn connect to both number theory and Fourier analysis.

Now mathematicians Alex Cohen, Cosmin Pohoata
and Dmitrii Zakharov (from left to right) of Mas-
sachusetts Institute of Technology, Cambridge an-
nounced a new cap on the size of the smallest triangle.
This trio has shown that for sufficiently large n, in every
configuration of n points chosen inside the unit square
| = 1 there exists a triangle of area less than 1/n8/7+1/2000
The new result has rev1ved the long-languishing Heilbronn triangle problem.
Source: https://www.quantamagazine.orq/the-biggest-smallest-triangle-just-got-smaller-20230908 /

3.7 AWARDS

3.7.1 Maryam Mirzakhani New Frontiers Prize 2024 to be Awarded to Three Women
Mathematicians

Maryam Mirzakhani New Frontiers Prize is awarded to three women mathe-
maticians for early- career achievements each receiving $50,000 prize. The prize
is presented to women mathematicians who have completed their Ph.D. within
the past two years.

The first recipient is Dr. Hannah Larson, an assistant professor of mathe-
_ matics at University of California, Berkeley, US, who will be awarded the 2024
7 \ Maryam Mirzakhani New Frontiers Prize for advances in Brill-Noether theory
© N ] and the geometry of the moduli space of curves. Larson joined UC Berkeley in
2023 and is also a Clay Research Fellow for 2022-2027.

The second recipient is Dr. Laura Monk, research associate of University of
Bristol, UK, who will be awarded the 2024 Maryam Mirzakhani New Frontiers
Prize for advancing our understanding of random hyperbolic surfaces of large
genus. Monk’s research is in the field of spectral geometry, an area of mathe-
matics studying the relationship between the vibrational modes of surfaces and
their geometry. The novelty of her approach lies in bringing new probabilistic
methods in a long-established field of pure mathematics.

Japanese mathematician and mathematical physicist Dr. Mayuko Ya-
mashita, associate professor, Department of Mathematics, Kyoto University,
Japan, is the third recipient of this prize. She will be awarded 2024 Maryam
Mirzakhani New Frontiers Prize for contributions to mathematical physics and
index theory. She is working on algebraic topology and differential cohomology
and their relation with quantum field theories. She represented Japan in the
2013 International Mathematical Olympiad, earning a silver medal.

All the three laureates will be honored at gala award ceremony in Los Angeles on April 13,
2024.

Sources:
1. hittps://breakthroughprize.org/News/83

2. https://finance.yahoo.com/news/breakthrough-prize-announces-2024-laureates-130600650. h-
tmi
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3.7.2 2024 New Horizons in Mathematics Prize to be Awarded to Three Mathematicians

This year, $1,00,000 New Horizons in Mathematics Prize is awarded to three
mathematicians.

The first recipient is Dr. Roland Bauerschmidt from New York University,
US, for his work in probability theory and the renormalization group - a con-
cept that emerged from the quantum field theories studied by this year’s Break-
through Prize in Fundamental Physics winners, and has become an important
object of study in mathematics. Earlier, he was professor of probability at the
University of Cambridge, and post-doc at Harvard University, Cambridge, and
the Institute for Advanced Study, US.

The second recipient is German applied mathematician Dr. Angkana Rii-
land, a professor in mathematics of University of Bonn, Germany, honored for
work also touching on ideas derived from physics, such as transitions between
states of matter, which are now studied in mathematical fields including analysis.
Her research has included work on the mathematical modeling of shape-memory
alloys and on the inverse problems arising in animal echolocation. She is holder
of a Hausdorff Chair in mathematics at the Hausdorff Center for Mathematics
of the University of Bonn.

Dr. Michael Groechenig, associate professor of University of Toronto, On-
tario, Canada receives the Prize for his insights into arithmetic geometry. He is
awarded this prize for contributions to the theory of rigid local systems and ap-
plications of p-adic integration to mirror symmetry and the fundamental lemma.
His research interest includes problems in arithmetic geometry related to Higgs
bundles, p-adic or motivic integration, algebraic K-theory. Most of his research
is devoted to finding arithmetic approaches to problems in geometry. Homo-
topy theory also plays an important role in his work. He is recipient of Alfred
P. Sloan fellowship ($75,000) for 2022-2024 and also Marie Sklodowska-Curie individual fellowship
(EU grant amounting to a total of 1,59,460 Euro) for 2016-2018.

Source: https://finance.yahoo.com/news/breakthrough-prize-announces-2024-laureates-130600650.
htmi

3.7.8 Breakthrought Prize 2024 Will be Awarded to Prof. Simon Brendle

The Breakthrough Prize Foundation announced the winners of the 2024 Breakthrough Prizes,
honoring an esteemed group of the world’s most brilliant minds for impactful scientific discoveries.
These prizes recognize “the world’s top scientists” in the fields of life sciences, fundamental physics
and mathematics. The annual Breakthrough Prize — popularly known as the “Oscars of Science”
- was created in 2012 to celebrate the wonders of our scientific age, by founding sponsors Sergey
Brin, Priscilla Chan and Mark Zuckerberg, Julia and Yuri Milner, and Anne Wojcicki. It comes
with a $3 million award.

Berkeley researcher Simon Brendle, professor of mathematics, has been
awarded the Breakthrough Prize 2024. He is recognized for “a series of
remarkable leaps in differential geometry, a field that uses the tools of calculus
to study curves, surfaces and spaces. Many of his results concern the shape of

- @nu100 . . . . . N
[iS#9l  surfaces, as well as manifolds in higher dimensions than those we experience

in everyday life”.

He is awarded the prize for transformative contributions to differential
geometry, including sharp geometric inequalities, many results on Ricci flow
and mean curvature flow and the Lawson conjecture on minimal tori in the 3-sphere. His ongoing
research on differential geometry and nonlinear partial differential equations is of vital importance
for the field.
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The Prize will be awarded on April 13, 2024 at the 10" annual Breakthrough Prize ceremony,
to be held in Los Angeles. The Breakthrough Prize ceremony is the only one of its kind that places
scientists on center stage, and is attended by celebrities in film, sports, comedy, and music, to lend
their spotlight to shine on scientists.

Source: https://breakthroughprize.org/News/83

3.8 OBITUARY

3.8.1 Pioneer of Computational Mechanics Prof. J. Tinsley Oden Passes away
at the age of 86

Prof. J. Tinsley Oden, world-renowned pioneer in computational mechanics
died on Aug. 27, 2023 at the age of 86.

His revolutionary treatise, “Finite Elements of Nonlinear Continua”, first
published in 1972, has not only demonstrated the great potential of compu-
tational methods but established computational mechanics as a new intellec-
tually rich discipline built upon concepts in mathematics, computer sciences,
physics and mechanics. Computational mechanics has since become a funda-
mentally important discipline, affecting engineering practice and education
worldwide, and laying the foundations for the flourishing field of computational science and engi-
neering.

Oden was born on Dec. 25, 1936 at Alexandria, Louisiana, US. He received a B.S. degree in
civil engineering in 1959 and a Ph.D. in engineering mechanics from Oklahoma State University
(OSU), US in 1962. He taught at OSU and the University of Alabama in Huntsville, US where he
was the head of the Department of Engineering Mechanics prior to going to Texas in 1973. He has
held visiting professor positions at other universities in the United States, England, and Brazil.

Oden was an Honorary Member of the American Society of Mechanical Engineers and was a
Fellow of six international scientific/technical societies: TACM, AAM, ASME, ASCE, SES, and
BMIA. He was a Fellow, founding member, and first President of the US Association for Computa-
tional Mechanics and the International Association for Computational Mechanics. He was a Fellow
and past President of both the American Academy of Mechanics and the Society of Engineering
Science.

Oden was awarded the A. Cemal Eringen Medal in 1989, the Worcester Reed Warner Medal,
the Lohmann Medal, the Theodore von Karman Medal, the John von Neumann medal, the New-
ton/Gauss Congress Medal, and the Stephan P. Timoshenko Medal. He was also knighted as
“Chevalier des Palmes Academiques” by the French government and he held four honorary doctor-
ates, honoris causa, from universities in Portugal, Belgium, Poland and the United States. Oden
was also elected a member of the US National Academy of Engineering in 1988.

A prolific writer and researcher, Oden was author or editor of more than 800 scientific works
including 57 books. He educated and advised more than 45 doctoral students and dozens of
postdoctoral researchers. He published extensively in this field and in related areas over the last
three decades.

Known for his legendary work ethic, Oden often came to the office on Sundays. He continued
to come to the institute daily even just a few weeks prior to his death.

Sources:

1. hitps://en.wikipedia.org/wiki/J.__ Tinsley Oden

2. https://news.utexas.edu/2023/08/30/ut-mourns-pioneer-of-computational-mechanics- and -
founder-of-oden-institute/
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3.8.2 Renowned Topologist Prof. Melvin Rothenberg Passes away at the age of 89

w, Melvin Gordon Rothenberg, a professor emeritus of mathematics who spent
' more than four decades making ground breaking mathematical discoveries
b at the University of Chicago, US, died on Aug. 1, 2023 at the age of 89.
He made multiple contributions in the mathematical fields of algebraic and
geometric topology that form the foundation of the work still ongoing today.
Born in Boston in 1934, Rothenberg was raised in Cleveland. He studied
philosophy and mathematics at the University of Michigan, US, and was
recruited by the University of California, Berkeley, US for his master’s and
doctorate degrees. There he studied under P. Emery Thomas, wrote his dissertation “On the
Milnor Construction of Universal Bundles”, and received Ph.D. in 1962. He joined the University
of Chicago, US, as a mathematics instructor the year prior.

Rothenberg’s early work focused on algebraic topology, related to the unstable version of the
J-homomorphism. With Norman Steenrod, he found a spectral sequence for the cohomology of
the classifying space of an H-space.

He then moved to work in geometric topology, where his contributions were fundamental and
groundbreaking. His two largest collaborations were with Dick Lashof and with Ib Madsen. With
Lashof, he made important early contributions to smoothing and triangulation theory and equiv-
ariant triangulation theory. His work with Madsen showed that it was possible to understand odd
order group actions by surgery theoretic means.

Rothenberg is fondly remembered as the model of an absent-minded professor. He was also
committed to social justice and political activism.

Source: https://news.uchicago.edu/story/prof-emeritus-melvin-rothenberg-uchicago-mathematici-
an -and- activist-1934-2028

3.8.83 Renowned Game Theorist Prof. T. Parthasarathy Passes away at the age of 84

Distinguished Indian mathematician and renowned game theorist Thiruvenkat-
achari Parthasarathy died on Sept. 22, 2023 at the age of 83.

T. Parthasarathy was a co-author of a book on game theory with T. E. S.
Raghavan, and of two research monographs, one on optimization and one on
univalence theory, published by Springer-Verlag. He was a former president of
® =~~~ “ the Indian Mathematical Society.

T He was born on Feb. 29, 1940, and received his B.Sc. and M.Sc. degrees
Av & from University of Madras. He worked on the topic “Minimax Theorems and
Product solutions for simple games” under the guidance of C. R. Rao and received Ph.D. in 1967
from the Indian Statistical Institute, Kolkata. After several years in academic positions at various
institutions in USA he joined the Indian Statistical Institute (ISI), Delhi, as Professor in 1979,
where he served until retirement in the normal course. Subsequently he was also affiliated with
the Chennai Mathematical Institute (CMI) for several years.

Prof. Parthasarathy received Shanti Swaroup Bhatnagar Award for Mathematical Sciences in
1986. He was elected as Fellow of the Indian Academy of Sciences in 1988 and Indian National
Science Academy in 1995.

Source: https://en.wikipedia.org/wiki/ Thiruvenkatachari_ Parthasarathy
oo
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4. Problem Corner

Udayan Prajapati

Mathematics Department, St. Xavier’s College, Ahmedabad

Email: udayan.prajapati@gmail.com

In the August 2023 issue of TMC Bulletin, we posed a problem from Geometry for our readers.
We have received four solutions to that problem from Prof. J N Salunke, Latur, Maharashtra, a
student Mr. Pranjal Jha, Kota, a student Ms. Saee Patil, Pune and Dr. M. R. Modak, Pune.

Also, in this issue we pose a problem from Geometry for our readers. Readers are invited to email
their solutions to Dr. Udayan Prajapati (Udayan.prajapati@gmail.com), Coordinator, Problem
Corner, before 15 December, 2023. Most innovative solution will be published in the subsequent

issue of the bulletin.
Problem posed in the previous issue:
Does there exist a scalene acute angled triangle T

ABC with an altitude AD, an angle bisector A(g h)/(3,4)

BE and a median CF such that AD, BE and
CF are concurrent?

(We present first two solutions in this Issue and F(g/2,//2)
other two solutions in the next Issue.)
Solution by Prof. J. N. Salunke: Consider an /o

acute-angled scalene triangle ABC with an al-

\a |

titude AD, an angle bisector BE and a median
CF. Take B as origin, point C on the positive B (0, 0) D(3,0)
X-axis and the vertex A in the first quadrant.

C(a, 0)/ (7.5, 0)

Let the coordinates of C be (a,0) and A as (g,h) with a = BC. So g and h are positive real

numbers. Let angle B/2 = a.

The equation of the line containing the angle bisector BE is y = x tan . —-(1)

The equation of the altitude AD is x = g. —(2)

The equation of the line containing the median CF is hx + (2a — g)y = ha. —-(3)

2 2
The slope of BA is, g = tan2a = 12_5[2?1;"“. Hence (tana + %)2 - 8;}! .
v/ (g%+h? . 212y
square root we get tana + % = % . That is tana = W_

Now, the lines mentioned in (1), (2) and (3) are concurrent if and only if

tana -1 0
1 0 —-g =0,
h 2a—g —ha

i.e. g(2a—g)tana+h(g—a)=0
) 2 72)—
e gn—g) (Y5 — o g,

i e g(2a—g)\/(2+h?) =g*(2a—g)+h(a—g)

Taking non-negative

ioe g%(2a—g)* (g +h?) =g*(2a —g)* + h*(a—g)* +2h*g*(2a — g)(a — g).

ie (20—g)?=h(a—g)*+2g8°(2a—g)(a—g)

i. e. g%(4a® —4dag + ¢%) = h?(a® + ¢* — 2ag) + 2¢*(2a* — 3ag + g?).
i. e. ¢?[—g%+2ag] = W?(a* + ¢* — 2ag).

i. e. a?h? —2¢(h* +¢*)a+ g*(h* + ¢*) = 0.

It is quadractic equation in a. Its larger root is,

202 - I

Taking this as a, the concurrency condition is satisfied.

29(1? +g*) + /48> (> + g2)> — 4n?g* (1> + g) _ g(* +g*) + &/ I* + &>
; .

n 31 ee
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For example, if g = 1, h = 2 then a = ™55 = BC and AB = v/5, CA = \/4+ 1252 Ope can
verify in this case that AB < BC < CA, triangle ABC is scalene and acute angled, the altitude
AD, the angle bisector BE and the median CF are concurrent.

Editor’s Note: It can be proved using the above calculations that there are non-similar infinitely
many triangles satisfying the required criteria.

3 2 /o2 2
Since the larger root mentioned above satisfies a — g = [ngghing, we see that a > ¢. Now, for
a fixed g, the expression on the right tends to 0 as h tends to infinity, so for large h, it will be less
than 1. Take also h > g+ 1.

Now the side BC is a < g+ 1. Since the height of the triangle is h > g + 1,the sides AB and AC
are > ¢+ 1 > BC. Hence angles C and B are bigger than angle A. As angles B and C are already
acute angles, so is angle A. Thus, when h is (> g + 1) sufficiently large, all angles are acute angles.
Already BC < g+ 1 and both AB and AC > g+ 1. To make sure AB # AC, take g > 1. As AD
is the altitude, we have BD = ¢ > 1, and as BC < g+ 1, we must have DC < 1. Thus BD # DC,
so AB # AC. Thus, all the sides of triangle ABC are distinct and all angles are acute angles. Also,
by the choice of a, the concurrency condition is satisfied. This gives infinitely many non-similar
triangles of the required type by fixing ¢ > 1 and taking h sufficiently large.

Solution by Mr. Pranjal Jha: We show that such a triangle does exist.

Construct a triangle ABC (as in above figure with co-ordinates of points in red) with cos B = 3/5
and tanC = 8/9. Since cosB and tanC are greater than 0,B and C, are acute angles. Also,
tanA = —tan(B+C) = (tanB+tanC)/(tanBtanC —1) > 0, so A is also an acute angle. Hence,
ABC is an acute angled triangle and angles A, B, C are different as values of their tangents are
different.

Now by converse of Ceva’s theorem, we are required to show that: IB)—% X % X % =1 (1)
As CF is median, % = 1. By the angle bisector theorem, % = %.

Finally, % = ﬁgzg:g. Hence by (1), we are required to show that ﬁgigzg X i—CB = 1, that is

BCcosB = ACcosC. But by sine rule, BC/sinA = AC/sinB, so it is enough to show that
sinAcos B = sinBcosC. Also, sin A = sin(B + C) and so we have to prove that (sin BcosC +
cos BsinC) cos B =sinBcosC. i. e. to show that (dividing by cos C)

sin B cos B + cos? Btan C = sin B. (2)
Now, cosB=3/5, so sinB =4/5. And tanC = 8/9,
So, LHS of (2) = (4/5)(3/5) + (9/25)(8/9) = 4/5 = RHS of (2). Hence the required triangle

exists.

Solution by Dr. M. R. Modak: With usual notation, by Ceva’s theorem and its converse, lines
AD, BE, CF are concurrent if and only if

BD CE AP ccosB a |
DC EA FB % becosC ¢ =~
2, 2 12 2,12 2
or acosB=bcosC or a-° +a—b _p. "t tb C,
2ca 2ab

or a+alc® b))+ —c(@®>+b*)=0 or with a/c=xb/c=y,
Cx(l-y) +1- (" +y?) =0,

x2(x—1
or yz:.?(c—{—l)—}_l (1)

Here x,y > 0. So by (1), x =1 & y = 1 & AABC is equilateral. Also, y < x & y?> < x2 &
WPt x+l<®+x2e2?—x—-1>02x>1lorx < —1/2.
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So, () x>1=x>y>1=a>b>c Also,inthiscase, y+1>x oy >x—-1&1y> >
x—1) e -2+x+1> 2 -DNrx-1) P -x?+x+1 >3 -2 —x+1&2x >0,
which is true. Hence x,y,1 are sides of a triangle.

Similarly, by the above, (ii) x <1 =x<y<l=a<b<c Also,x+y>1&y>1-x&
¥>(1-x?ex®—x>+x+1>(1-x%)(1—x) < 2x > 0. Hence x,y,1 are again sides of a
triangle. Hence the solutions (x,y) of (1) with x > 0, x # 1, yield the family of all the scalene
triangles with the given property.

For example, for x = 3, (1) gives y*> = 11/2. So, taking ¢ = V2, we get a = xc = 3v/2, b = /11.
Here x >y > 1 and cos A < 0 and so the triangle is obtuse-angled.

Next, for a = 4, ¢ = 5, we get x = 0.8 and (1) gives y> = 209/225 so that b = /209/3. Here
x <y <1 and the triangle is acute-angled.

For variations of this problem refer to Problem 790, Mathematics Magazine, Jan. 1972, pages
40-51.

Editorial Note: A criterion for a required acute angled scalene triangle can be obtained as follows:

(i) If x > 1 the by above, a > b > ¢. So, A is the largest angle. So ABC is an acute angles
triangle if and only if A is an acute angle, if and only if cosa > 0, i. e. b*>+c? > a?, i.
e. Y +1>x% If y* +1 = x2, ABC is a right-angled triangle. If > +1 < x2, ABC is an
obtuse angled triangle. Now, y?> = x?>(x —1)/(x +1) + 1. For an acute angled triangle we
require y> +1 > x% i e. x2(x—1)/(x+1)+1+1> 2% i e ¥2(x—1)/(x+1) > x> -2,
e 2(x—1)>(2-2)(x+1)i e ¥ —x?2>x3+x2-2x—2,i e 2x2—2x —2 < 0,
ie.x?—x—1<0,i.e x€ (%, %) As already x > 1, we get the condition that

X € (1, 14“2—‘/5>

(ii) If x < 1, then by above, a < b < c¢. So, C is the largest angle. So ABC is an acute-angled
triangle if and only if C is an acute angle if and only if cosC > 0, i. e. a®>+b*> > ¢?, i. e.
x%+y? > 1. Again, if x> + y?> = 1, then ABC is a right-angled triangle. If x2 +y? < 1, ABC
is an obtuse angled triangle.

Now, using, > = x*(x —1)/(x+1) + 1, x2 +y? > 1 becomes, x> + x*(x —1)/(x+ 1) +1 > 1, i.
e. x2+x*(x—1)/(x+1) > 0. Cancelling x?,1+ (x—1)/(x+1) >0,i. e. x+1+x—1>0,
i. e. 2x > 0, 1. e. x > 0, which is true. Thus if x < 1, the condition is always satisfied and the
triangle is acute-angled.

Thus, ABC is also acute angled if and only if either 0 < x < 1 or 1 < x < (14 +/5)/2, and y
satisfies y> = x?(x — 1)/(x +1) + 1. If x = 1, the triangle is equilateral.

Solution by Saee Patil: We show that the answer is yes and give a way to construct such triangles.

e Start with an arbitrary isosceles triangle ABDE with BD = DE and such that 45° >
/DBE > } cos™! ((\@— 1)/2) and ZDBE # 30°.

e Denote by [ the line parallel to DE passing through B and let m be the line perpendicular
to BD at D.

¢ A is the intersection of [ and m, and C is the intersection of lines BD and AE.

e The desired triangle is AABC as shown in the figure below.
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To prove that gives a required triangle, note that AD is the
altitude from A and BE bisects ZABC. Let AD, BE intersect
at O and let CO meet AB in F'.

Then by Ceva’s theorem, 1 = BD/DC -CE/EA - AF'/F'B =
ccosB/bcosC-a/c- AF'/F'B = acosB/bcosC - AF'/F'B.
So that to prove that AF’ = F’'B, it is enough to prove
that acosB = bcosC. Now, EC = ab/(a+ ¢) and since
triangles ABC and EDC are similar, a/bcosC = b/EC, so
that bcosC = a?/(a+c). Hence, acosB = (a/c)ccos B =
(a/c)(a—bcosC) = (a/c)(a—a?/(a+c)) =a?/(a+c)=DbcosC. Thus CF' is the median from
C.

Also, by the above, cosB=a/(a+c) = x/(x+ 1), taking x = a/c, as in earlier solution.

Now by data, 90° > /B = 2/DBE > cos~! ((\/5— 1)/2). Hence, angle B is acute and x/(x +

1) =cosB < (v/5—1)/2, so that x < (v/5—1)/(3—+/5) = (v/5+1) /2. Since, /B # 60°,x # 1
and hence by editorial note above, AABC is the required triangle.

Problems for this issue

Proposed by Dr. Vinaykumar Acharya

1. Determine all the triangles with integer sides having semi-perimeter same as its area.

2. 5,5, 6 and 5, 5, 8 are isosceles triangles with integer sides and with equal integer area.
Determine all such pairs of isosceles triangles with integer sides having equal integer area.

goo

5. International Calendar of Mathematics Events

Ramesh Kasilingam
Department of Mathematics, II'TM, Chennai
Email: rameshk@iitm.ac.in

November 2023

e November 6-8, 2023, The First Sharjah International Conference on Mathematical Sciences,
Department of Mathematics, College of Science. Sharjah. United Arab Emirates.
www.sharjah.ac.ae/en/Media/Conferences/SICMS23/Pages/default.aspx

o November 3-5, 2023, 2023 Field of Dreams Conference, Atlanta, GA.
www.mathalliance.orq/field-of-dreams-conference /index. htmi

e November 6-9,2023, Algorithms, Approximation, and Learning in Market And Mechanism
Design, SLMath (Formerly MSRI), 17, Gauss Way, Berkeley, CA 94720.
h}ww.slmath.org workshops 1082]

e November 10-12, 2023, The Fall 2023 edition of the Texas Geometry and Topology conference,
Rice University, Texas, USA. https://sites.qgoogle.com /view/tgtc-fall-2023/homé

e November 11-12, 2023, BUGCAT Conference 2023, SUNY Binghamton.
seminars.math.binghamton.edu/BUGCAT /index.html
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November 17-19, 2023, Workshop on Geometric Representation Theory and Moduli Spaces,
University of North Carolina, Chapel Hill, NC. ltarheels.lifue grtm/f

November 27-29. 2023, Computational Algebra, Magma University of Sydney, Australia.
lwww.maths.usyd.edu.au U comald

November 27 - December 1, 2023, Workshop IV: Topology, Quantum Error Correction
and Quantum Gravity, Institute for Pure and Applied Mathematics (IPAM), Los Ange-
les, CA. www.ipam.ucla.edu/programs/workshops/workshop-iv-topology-quantum-error- cor
Prectz'on - and—quantum—gmm’ty/f

December 2023

December 4-7, 2023, Mathematical Relativity: Past, Present, Future, Erwin Schroedinger
Institute, Vienna. lwww.esi.ac.at events 6526/f

December 4-8, 2023, Hot Topics Workshop: Recent Progress in Deterministic and Stochastic
Fluid-Structure Interaction, SLMath (Formerly MSRI), 17, Gauss Way, Berkeley, CA 94720.
|www.slmath.0rg workshops 1044

December 8-10, 2023, Tech Topology Conference, Georgia Institute of Technology, Atlanta,
Georgia. |etnyre.math.gatech.edu TechTopology 2025}

December 22-23, 2023, National Conference of Mathematics and its Application in Science
(NCMAS-2022), Department of Mathematics, School of Science, Uttarakhand Open Univer-
sity, Haldwani, Uttarakhand, India, 263139. luou.ac.z’n ncmas—?()@é

December 22-24, 2023, 38th Annual Conference of Ramanujan Mathematical Society, IIT
Guwahati. hitps://event.iitg.ac.in/rms2023 /registration.php

January 2024

January 3-6, 2024, 2024 Joint Mathematics Meetings, Moscone North/South and The San
Francisco Marriott Marquis, San Francisco, CA. lwww jointmathematicsmeetings.orqg jmml

January 4-7, 2024, International Conference on Mathematics and Computing - Icmc 2024
Kalasalingam Academy of Research and Education, Krishnankoil-626126, Tamilnadu, India.
licm02024 .kalasalingam.ac.in

January 7-10, 2024, ACM-SIAM Symposium on Discrete Algorithms (SODA24), Westin
Alexandria Old Town Alexandria, Virginia, USA.
lwww.siam.org conferences/cm/conference soda?%

January 8-10, 2024, International Symposium on Artificial Intelligence and Mathematics
(ISAIM2024), Fort Lauderdale, FL. h’saimQOQQ. cs.ou.edU/f

January 8-10, 2024, International Workshop on Combinatorial Image Analysis (IWCIA’24),
Fort Lauderdale, FL. — Collocated With ISAIM. isaim2024.cs.ou.edu/iwcia. htmi

January 18-19, 2024, Connections Workshop: Commutative Algebra, SLMath 17 Gauss Way,
Berkeley, CA 94720. lwww.msri.org workshops 1054

January19-21, 2024, International Conference on History of Mathematics (ICHM2023-24),
Under the patronage of Indian Society for History of Mathematics, IIT Guwahati.
https://indianshm.orq/index.php /conferences /4 01-ishm-conf-jan-2024

January 29 - Febroary 2, 2024, AIM Workshop: Analytic, Arithmetic, and Geometric As-
pects of Automorphic Forms, American Institute Of Mathematics, Pasadena, California.
laz'math.org workshops /upcoming aagaautomorphiC/f
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TRIBUTES TO LEGENDARY STATISTICIAN
PROF. C. R. RAO

On a day India marked its presence on the Moon, it lost one of
its brightest mathematical stars. Prof. Calyampudi
Radhakrishna Rao, one of India’s greatest mathematicians and
statisticians, died in US on Aug. 22, 2023, about two weeks
before his 103rd birthday.

He was a former director of Indian Statistical Institute (ISI) and
had hit the headlines earlier this year after he was awarded the
International Prize in Statistics, which many consider
equivalent to the Nobel Prize.

Having taught and researched at the Indian Statistical Institute (ISI), Kolkata, Dr. Rao
pioneered several fundamental statistical concepts such as the Cramer-Rao inequality
and Rao-Blackwellization, concepts that now appear in undergraduate textbooks on
Statistics and Econometrics.

C. R. Rao was born on Sept. 10, 1920, in Hadagali, Bellary district, in a Telugu family. He
joined the ISI as a student when it was set up by Dr. P. C. Mahanobilis, when statistics as
a subject was still in its early years and yet to be taught as a distinct subject at the post-
graduate level.

He was sent by Mahalanobis to Cambridge University to study use of certain statistical
techniques for anthropological analysis, and from where he earned a doctorate under the
supervision of Ronald Fischer, who is among the pioneers of the field. On returning to
the ISl in India, where Rao spent the next 40 years of his career, he established several
UG and graduate programmes in statistics and was instrumental in establishing several
bureaus of the Indian Statistical Institute in various states.

Dr. Rao was also a member of several government committees for the development of
national statistical systems, statistical education and research in India. He served as
chairman of the committee on Statistics (1962-69), chairman of the Demographic and
Communication for Population Control (1968-69), chairman of the committee on
mathematics, Atomic Energy Commission (1969-78), member of the committee on
Science and Technology (1969-71).

He was a pillar of the ISI, inspiring generations of students and researchers who
themselves became iconic figures like S. R. Srinivasa Varadhan and K. R. Parthasarathy.
He had won every conceivable award and honour.

After his retirement, Rao moved to the United States and worked at several universities.
Former US President George Bush conferred on him the National Medal of Science. He
was awarded India’s civilian honours the Padma Bhushan and Padma Vibhushan in
1969 and 2001, respectively.

On behalf of TMC, we pay our tributes to this great son of our sail.

Source: https://www.buffalo.edu/ubnow/stories/2023/08/obit-cr-rao.html




Shiing-Shen Chern (28 Oct. 1911 - 03 Dec. 2004)

A Chinese-American mathematician and poet. Made fundamental
contributions to differential geometry & topology. Called the "father of modern

differential geometry". Won many awards including the Wolf Prize and the
Shaw Prize. The IMU established the Chern Medal in 2010. At UC Berkeley, he
Co-founded the Mathematical Sciences Research Institute in 1982.

Akshay Venkatesh, FRS (born 21 Nov. 1981)

Australian-Indian mathematician. Worked in the fields of automorphic forms,
representation theory, ergodic theory, and algebraic topology. Won medals at
both the International Physics and Mathematical Olympiad at the age of 12.
Was awarded the Fields Medal for his synthesis of analytic number theory,
homogeneous dynamics, topology, and representation theory.

Jacob Alexander (born 07 Dec. 1977)

An American mathematician, a 2014 MacArthur Fellow. Won a gold medal with
a perfect score in IMO-1994. Known for his work on infinity categories and

derived algebraic geometry. Also worked on elliptic cohomology and
topological field theories. The winners of the Breakthrough Prize in
Mathematics and a MacArthur "Genius Grant" Fellowship both in 2014.
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