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From the Editors’ Desk
The Mathematics world is celebrating 400th birth anniversary of a legendary French mathe-

matician Blaise Pascal (19 June, 1623 - 19 August, 1662). In a short span of life, extending only
39 years, he made amazing contribution to diverse fields of Mathematics.

Without any formal training in Mathematics, he went on to experiment with geometrical figures,
and wrote an important short work on projective geometry, “Essay on Conics” at the age of just
16. Also, he formulated a theorem named after him, proving a mystic property of hexagons.

Between 1642 and 1644, Pascal conceived and constructed the first digital calculator, the
Pascaline, to help his father in his tax computations, which can be marked as a beginning of
Computing technology.

He reproduced and amplified experiments on atmospheric pressure by constructing mercury
barometers and measuring air pressure. These tests paved the way for further studies in hydro-
dynamics and hydrostatics. While experimenting, Pascal invented the syringe and created the
hydraulic press, an instrument based upon the principle that became known as Pascal’s principle.

In his “Treatise on the Arithmetical Triangle” which was published in 1653, he studied the
Pascal Triangle, making many new mathematical observations and proved a useful theorem of com-
binatorics dealing with binomial coefficients. Pascal’s triangle in fact corresponds to Meruprastara,
introduced by Pingala around 3rd century BCE, in his book Chhandahshastra on prosody.

In 1654, Pascal began corresponding with mathematician Pierre de Fermat. He conducted
experiments with dice and discovered that there was a fixed likelihood of a particular outcome.
Thus, along with Fermat, he laid the foundation of the probability theory.

Pascal’s scientific journey was guided partly by his curiosity and partly by his concern regarding
real world problems and hence his discoveries were so relevant and innovative and marked the
beginning of quite a few areas of mathematics research. In Article 7, Prof. V. O. Thomas and Dr.
D. V. Shah throw some light on his life and works.

Article 1 is the third and last part of multi-article series by Prof. Ambat Vijayakumar started
in the July, 2022 issue of TMCB. In part 3, he discusses in general, about real world networks
and more on brain networks, and also introduces an upcoming branch of graph theory called
evolutionary graph theory and epidemiological networks.

In the second article, Prof. S. A. Katre establishes some interesting results on the degree of an
extension field of a field k, obtained by adjoining square roots of n elements of k. Some interesting
properties of Ramanujan’s Birthday Magic Square is the subject of Article 3.

In Article 4, Dr. D. V. Shah gives an account of significant developments in the Mathematical
world during recent past, including brief write-ups on the winners of the 2023 Abel Prize, and 2023
Shaw prize, and on a recently elected Fellow of the Royal society.

In Article 5, Kalyan Sinha pays tributes to India’s one of the most renowned mathematician,
Prof. K. R. Parthasarathy who passed away on 14th June 2023, by highlighting significance of his
contributions to Mathematics. We also intend to publish a special issue of TMCB in the honour
of Prof. Parthasarathy in near future. We also mourn the sad demise of Dr. Mangala Narlikar
who passed away in July 2023 and Prof. S. A. Katre pays tributes to her in article 6.

In the Problem Corner, Dr. Udayan Prajapati presents two solutions to the problem posed
in the April 2023 issue. These solutions are given by a student Shrestha Suraiya, and by Prof.
Rajendra Pawale, who posed the problem. A problem on Geometry is also posed for our readers.
Dr. Ramesh Kasilingam gives a calendar of Mathematics Events, planned during August, 2023 to
October, 2023, in Article 9.

We are happy to bring out the first issue of Volume 5 in July 2023. We thank all the authors,
all the editors, our designers Mrs. Prajakta Holkar and Dr. R. D. Holkar, and all those who have
directly or indirectly helped us in bringing out this issue on time.

Chief Editor, TMC Bulletin
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1. Graph Theory 1736 -1936 and Beyond - PART 3
Ambat Vijayakumar

Department of Mathematics, Cochin University of Science and Technology
Cochin - 682 022, India

Email: vambat@gmail.com

1.1 Introduction

In this concluding article we shall discuss some aspects of graph theory in the ‘information age’.
The prediction of the renowned popular science writer Arthur C. Clarke in the Popular Science
Magazine (May,1970), that satellites would some day “bring the accumulated knowledge of the
world to your fingertips” became a reality in 1989 through the invention of World Wide Web
(WWW) by the British computer scientist Tim Berners-Lee while working at CERN(Conseil
Européen pour la Recherche Nucléaire).

WWW the “universal linked information system” is a global collection of documents and other
resources, linked by hyperlinks and Uniform Resource Identifiers (URIs) and serves as a startling
example of a Real World Network (RWN) of very huge order, approximately 1.5 billion. WWW
is also called an “infinite imaginary library”. RWNs are the main topic of discussion in this part.
The basic research problem will be to find the various parameters to ‘understand’ such networks,
which are abundant in nature.

In an earlier part of this article we had discussed in detail the frivolous origin of graph theory and
most of the examples mentioned were static, in the sense that the order, size and other parameters
of the network were constants. Later on researchers started the study of probability distributions
over graphs. One of the first of its kind, the Erdös -Rényi random graph models were studied in
1959 by Paul Erdös and Alfred Rényi in their celebrated paper entitled ‘Random Graphs’. A
random graph is obtained by starting with a set of n isolated vertices and adding successive edges
between them at random. We have to determine at what stage a particular property of the graph
is likely to arise. Béla Bollobás initiated an exciting discussion on Random Graphs in [4].

This article will discuss in general, about real world networks and more on brain networks
[8, 16], introduce an upcoming branch of graph theory called evolutionary graph theory [15]
and epidemiological networks [14] which gained a great leap due to the Covid-19 pandemic.

1.2 Real World Networks (RWN)

The first systematic study of real world networks was done by Derek John de Solla Price (1922
- 1983), a British Physicist and a historian of science, in his quantitative studies on scientific
publications. This gave birth to ’Scientometrics’, the study of measuring and analysing scholarly
articles. He showed in 1965 that the number of citations that a paper receive had a heavy-tailed
distribution following a Pareto distribution or power law.

He also proposed that the power law behaviour is due to the notion of ‘Preferential Attach-
ment’. A preferential attachment process is any of a class of processes in which some quantity,
typically some form of wealth or credit, is distributed among a number of individuals or objects
according to how much they already have, so that those who are already wealthy receive more
than those who are not. This phenomenon is now popularly known as ‘Mathew Effect’ due
to Robert Merton [12] an American sociologist. He in the article, ‘Mathew Effect in Science’
which appeared in the prestigious journal ‘Science’ [12] says that scientific achievements exhibit
a Mathew Effect described in the Gospell of Matthew, the first book of the New Testament of the
Holy Bible.

Matthew 25:29 - “For to every one who has will more be given, and he will have
abundance; but from him who has not, even what he has will be taken away”. �
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1.3 Scale-Free Networks

Real world networks are basically huge and ‘dynamic’ in the sense that they are generated by
a web application, but still follow the ‘Small World Phenomena’ that two persons having a
common friend are likely to be friends [7]. This is the basic principle by which the ‘Facebook
Network’ also functions. Metabolic Networks, food webs, semantic networks, biological networks
and the protein-protein interaction networks are some other examples. In such massive networks,
traditional graph invariants are unlikely to be of any significance.

Recent interest in Scale-Free Networks started in 1999 with the work by Albert-László
Barabási and Réka Albert [2] who mapped the topology of a portion of the WWW, and found
that some vertices, which they called “hubs”, had many more connections than others and that
the network as a whole had a Power Law Distribution of the number of links connecting to a
vertex. Hubs have a significant impact on the network topology. After finding that a few other
networks, including some social and biological networks, also had heavy-tailed degree distributions,
they coined the term “scale-free network” to describe the class of networks that exhibit a power-law
degree distribution.

Real-world networks are often claimed to be scale free, meaning that the fraction of vertices
with degree k follows a power law k−α, a pattern with broad implications for the structure and
dynamics of complex systems [13]. However, there are conflicting views on the universality of
scale-free networks. �

1.4 Small World Networks - Some Parameters

Everyone meets with the small-world phenomenon, though many of us may be not familiar with
the term. As a typical case, in a get together most of us will be strangers to begin with. But
soon after meeting a stranger, we are surprised to discover that we have a mutual friend, or we are
connected through a short chain of acquaintances.

In a small-world network, most vertices are not neighbours of one another, but the neighbours
of any given vertex are likely to be neighbours of each other. Due to this, most neighbouring
vertices can be reached from every other vertex by a small number of steps. In other words, a
small-world network is defined to be a network where the distance between two randomly chosen
vertices (i.e. the number of steps required) grows proportionally to the logarithm of the number
of vertices in the network [18].

Figure 1

An interesting property of any RWN is the ‘Community struc-
ture’. A community, with respect to a network, is a subset of
vertices that are densely connected to each other, and loosely con-
nected to the vertices in the other communities in the same net-
works (see Figure 1). As an example, in social media platforms
such as Facebook, Instagram, or Twitter, where we try to con-
nect with other people, we end up being connected with people
belonging to different social circles. These social circles can be a
group of relatives, school mates, colleagues, etc. which are com-
munities. Detecting communities in a network is one of the most
important and difficult tasks in network analysis. However, the
Girvan-Newman Algorithm (named after Michelle Girvan, a
Physics Professor in the University of Maryland, and Mark New-
man FRS, a Professor of Physics in the University of Michigan)) is

a hierarchical method used to detect communities in complex systems [9]. It relies on the notion
of edge betweenness and iterative elimination of edges that have the highest number of shortest
paths between nodes passing through them.

We shall now discuss in detail some parameters [5, 11] of real world networks.
a) Clustering Coefficient: is a measure of the degree to which vertices in a graph tend to
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cluster together. In most real-world networks, and in particular social networks, vertices tend to
create tightly knit groups characterised by a relatively high density of ties. Duncan J. Watts and
Steven Strogatz [17] introduced this measure in 1998 to determine whether a graph is a small-
world network. It locally quantifies how close its neighbours are to being a clique (complete graph)
and hence the clustering coefficient of such networks will not be small. There are some efficient
clustering algorithms - density based, distribution based etc. using Python.
b) Average Path Length: is defined as the average number of steps along the shortest paths
for all possible pairs of network vertices. It is a measure of the efficiency of information or mass
transport on a network. Some examples are, the average number of clicks which will lead you
from one website to another, or the number of people you will have to communicate through, on
an average, to contact a complete stranger. Obviously in a small world network the average path
length will be very small. Biological networks display “small-world” properties, whereby any two
genes are separated by only a small number of links [18]. In fact, the average path length in
biological networks varies between roughly two to four interactions. Thus, nearly all genes are
linked within a short number of steps to all other genes. For detailed discussion on these topics,
see [3].
c) Centrality: In the context of the classical facility location problems, the notions like centre,
centroid, median etc are well known. Depending on the nature of the problem, we choose the
appropriate measure of centrality. In the case of real world networks, we have to identify, the most
important person(s) in a social network, most cited researcher in a field of study, super spreaders
in the epidemiological networks etc. Consequently, we have different measures of centrality such
as degree centrality, betweenness centrality, eigen vector centrality, closeness centrality etc. Each
of these measures assigns numbers to the vertices of the graph so that they can be ranked.

In the degree centrality, we assign degrees to each vertex and choose those with highest
degrees.

American sociologist Linton Freeman introduced the notion of betweenness centrality in
1977, a notion which depends on the number of shortest paths through a particular vertex. It is
the ratio of the total number of u − v paths and the total number of u − v paths through a partic-
ular vertex. As an example, in a telecommunications network, a vertex with higher betweenness
centrality would have more control over the network, because more information will pass through
that vertex.

The closeness centrality is calculated as the reciprocal of the sum of the length of the shortest
paths between the vertex and all other vertices in the graph (also known as transmission index in
communication theory, the Wiener index in mathematical chemistry). Thus, the higher central a
vertex is, the closer it is to all other vertices.

The eigenvector centrality is a measure of the influence a vertex has on a network. If a vertex
is pointed to by many vertices (which will also have high eigenvector centrality) then that vertex
will have high eigenvector centrality. If λ is the largest eigen value of the network, the eigenvector
centrality of a vertex vi is defined as the ith entry in x̄ where x̄ = 1

λ Ax̄. Since the adjacency matrix
of a connected graph is irreducible, the existence of λ is assured by the Perron-Frobenius Theorem
[11].

1.5 Biological Networks

Different types of information can be represented in the shape of networks in order to model the
cell. The meaning of the nodes and edges used in a network representation depends on the type
of data used to build the network. Some of the most common types of biological networks [5]
are: Protein-Protein Interaction networks, Brain Networks, Metabolic Networks, Gene regulatory
networks etc. We shall now discuss some of these.
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1.6 Protein-Protein Interaction Networks

In this network, vertices represent proteins and by edges, their interactions. Proteins are the main
agents of biological function. Proteins control molecular and cellular mechanisms and determine
healthy and diseased states of organisms. However, they are not functional in isolated forms but
they interact with each other and with other molecules (e.g., DNA and RNA) to perform their
functions.

1.7 Brain Networks

In the human brain, there is a complex network of neurons that encompass brain network systems.
Neurons don’t exist in isolation. These neurons need to interact with each other to create a brain
network system. The interaction between different neurons in the brain is needed to communicate
and process information according to what we see, hear, think, and move. This network is un-
doubtedly the most complex network known to humanity. A human brain has about 100 million
(1011) neurons linked by 100 trillion (1014) synapses. One of the goals of neuroscience is to study
the ‘brain connectivity’. Olaf Sporns( Psychological and Brain Sciences, Indiana University, USA),
Giulio Tononi (Consciousness Science, University of Wisconsin) and Rolf Kötter (1961-2010) coined
the term, Connectome, which reduced the whole study in terms of a ‘Connection Matrix’ rep-
resenting all possible pairwise anatomical connections between neural elements in the brain. The
possibility of visualisation of the brain due to technological advances such as the open source
project called ‘Open Worm’, has made the study all the more exciting and challenging. The book,
Fundamentals of Brain Network Analysis, by Alex Fornito etal. [8] discusses in detail all these
aspects. In the case of brain networks, a new kind of centrality- Leverage Centrality - has been
studied [10], which considers the extent of connectivity of a vertex relative to the connectivity of
its neighbours.

C. elegans: Caenorhabditis elegans with just 302 neurons in its nervous system is a free-
living transparent nematode about 1 mm in length [11] that lives in temperate soil environments
and is frequently chosen as a model organism to study human diseases. C. elegans lacks respiratory
or circulatory systems. In 1963, Sydney Brenner (1927 - 2019 ), an African biologist who shared the
Nobel prize in physiology in 2002 proposed research into C. elegans, primarily in the area of neu-
ronal development. It was the first multicellular organism to have its whole genome sequenced, and
in 2019 it was the first organism to have its connectome completed and it turned out to be a small
world network. There are some recent attempts in studying the connectome of C. elegans using
graph theory. S. R. Kingan explains in her exciting blog (http://graphsandnetworks.blogspot.com)
that the picture (see Figure 2) of C. elegans which are featured in the front cover page of [11] was
drawn using a program called neuroConstruct. The data is taken from the Worm Atlas Project
- a data base featuring behavioural and structural anatomy of C. elegans and other nematodes
and drawn in Gephi 0.9.2 using the Fruchterman - Reingold layout. An open source project
‘Openworm’(https://openworm.org) will also help us in creating virtual organisms. The Centre
for Neuroscience in our university also is conducting research in C. elegans and I was quite excited
to see this worm through stereo microscope recently.

1.8 World Wide Web - Structure and Diameter

It is interesting to ask, what is the structure of the WWW and viewed as a network, what is its
diameter?

It is interesting to note that, the structure of WWW is that of a ‘Bow-Tie’ as proposed by
Broder et al. in [6]. It models the websites and pages in the World Wide Web as a bow-tie
structure with most pages in either IN, OUT, or the SCC component. SCC represents a large
strongly connected component where most websites are directed to each other; IN represents
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Figure 2 Figure 3

pages that direct to pages in the SCC; OUT represents pages that are directed by pages in the
SCC (see Figure 3).

As of January 2023, it is estimated that there are 202 million active websites and 920 million
inactive websites in the world. The topology of this graph determines the web’s connectivity and
consequently our effectiveness in locating information on the WWW. However, due to its large
size, and the continuously changing documents and links, it is impossible to catalogue all vertices
and edges. Despite its huge size, the WWW is a highly connected graph of average diameter of
only 19 links. Due to the surprisingly small diameter of the web, all the information is just a few
clicks away - that is, WWW is also is a small world phenomenon.

1.9 Power Law in Networks

Though there are billions of webpages, how is that some are more popular? How is that some pages
become the center of the web activity? Though the WWW is dynamic, its growth is governed by
a principle- Pareto principle, named after Vilfredo Pareto (1848-1923) an Italian polymath, which
states that for many outcomes, roughly 80% of consequences come from 20% of causes. A power
law distribution (Pareto distribution) is a characteristic of the 80/20 rule. One attribute of power
laws is their scale invariance.

The power law can be precisely explained as follows.
Let G be a network of order n and N(k, G) = {v in G such that degree(v) = k}. The degree

distribution of G is the sequence {N(k, G) : 0 ≤ k ≤ n}. The degree distribution of G follows a
power law if for each degree k, N(k, G)/n is asymptotically proportional to k−β, for some constant
β > 1, called the exponent of the power law. Taking logarithm, log(N(k, G) = log(n) −
β log(k). Hence, the log− log plot will be a straight line with slope −β.

Evolutionary graph theory is an approach to study how topology affects evolution of a
population as detailed by Martin Andreas Nowak [15] and using the techniques of graph theory,
probability theory, and mathematical biology.

Martin Andreas Nowak (1965 - ), a pioneer in this emerging field is
an Austrian-born professor of mathematical biology, at Harvard University,
heading the Program for Evolutionary Dynamics (PED) since 2003. Nowak
realised that he could apply graph theoretic tools to explain in a better way,
the theory of origin of species and the principle of natural selection propa-
gated by the British naturalist and biologist, Charles Darwin (1809 - 1882).
It is quite exciting to note that Martin Nowak has over 300 scientific publi-

cations, of which 40 are in Nature and 15 in Science.
We conclude this article with a brief note on epidemiological networks, which are of current

P 5 O



TMC Bulletin, July 2023

interest due to the recent Covid-19 pandemic.

1.10 Epidemiological Networks

In this network the vertices are living organisms like humans, animals or plants and edges indicate
the transmission of the disease. Average degree is called the reproduction number because
when a disease is transmitted to another person in a susceptible population, it reproduces itself.
The most important use of this parameter is to determine if an emerging infectious disease can
spread in a population and find what proportion of the population should be immunized through
vaccination to eradicate a disease. When this parameter becomes less than 1, we interpret that
the pandemic shows signs of ending. In the case of Sars-Cov-2 it had varied from 2 to 6. One
person infected with COVID-19 will usually infect around three other people. A super-spreader
is someone who infects more than this number. Super-spreaders are highly infectious. In any
pandemic, 20% of the population spread 80% of the infections. That is, the spread follows Pareto
distribution. This is true for the COVID-19 pandemic also. For a discussion on epidemiological
networks, see [14].

Conclusion: In this three-parts article I have tried to give an expository account of how the
subject of graph theory/networks which had its origin in some simple looking puzzles has grown
to explain very many interdisciplinary topics including brain networks and epidemiology. It also
finds applications in some unexpected fields of knowledge and opens up very many challenging
problems of interdisciplinary nature.
Acknowledgment: The author thanks the unknown referee for suggesting some changes, which
improved the article and Dr. K. Pravas, Government Maharaja’s College, Ernakulam, for helping
in the typesetting.
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2. On Field Extensions by Square Roots
S. A. Katre

Bhaskaracharya Pratishthana, Pune. Email: sakatre@gmail.com1

Abstract: In this article we obtain some necessary and sufficient conditions for an extension
field of a field k, obtained by adjoining square roots of n elements of k, to have degree 2n. The
criterion helps in finding the degree of such an extension.
Key words: Field extensions, square roots, degree of an extension.

If K and F are fields and F is a subfield of K, then K is called an extension field of F. We say
that K/F is a field extension. In this case K is a vector space over F and the dimension of K as
a vector space over F is denoted by [K : F]. This dimension is called the degree of the extension
K/F.
R. L. Roth [2] has given an interesting proof of the fact that if p1, . . . , pn are distinct primes, then
[Q(

√
p1, . . . ,

√
pn) : Q] = 2n. More generally, one would like to find the degree of the extension

field over Q when the pi are replaced by composite integers or even by arbitrary rational numbers.
This question can also be considered for an arbitrary field k. An elementary treatment for k = Q

is found in [1]. Our answer depends upon the characteristic of k. One can find the degree of the
extension algorithmically by calculations over k as is illustrated in this article.

Characteristic of a field: If F is a field and k · 1 is not zero for any positive integer k, then
F is said to be of characteristic 0. In this case the subset of Z consisting of those k ∈ Z such
that k · 1 = 0 is (0). If for some k ̸= 0, k · 1 = 0, then the least such positive integer k is called
as the characteristic of F. In both the cases, if m is the characteristic, then the set of all k such
that k · 1 = 0 is mZ. Q, R, C are fields of characteristic 0. If the characteristic of a field is not 0,
then we can see that it must be a prime number. The field Zp, p prime, of integers mod p, is of
characteristic p, so is the field of rational functions in one or more variables over Zp. A field is of
characteristic 0 (resp. p) if and only if it contains an isomorphic copy of Q (resp. Zp).
If F is a field of characteristic 2, then 2 = 2 · 1 = 0. Hence −1 = 1. For any a ∈ F, 2 · a = 0 and 2 is
not invertible in F. Also for a, b ∈ F, (a + b)2 = a2 + 2ab + b2 = a2 ± b2. Thus a sum or difference
of squares is a square. Clearly the product of two squares and the reciprocal of a nonzero square
is a square. Thus, if char (F) = 2, the set of squares of elements of F is a subfield of F.

Notation: From now on k, F, K will denote fields. For a ∈ k,
√

a denotes one of the square roots
of a, possibly in an extension field of k. Square roots of elements of k under consideration will
lie in a given extension field of k, e.g. a fixed algebraic closure of k. If char.(k) = 2, an ele-
ment a ∈ k has a unique square root, possibly in an extension of k. For, if a = b2 = c2, then
0 = b2 − c2 = (b − c)2 = 0, so b − c = 0, or b = c. Note also that for char(k) = 2 and a, b ∈ k,√

a + b =
√

a +
√

b.
In what follows we shall consider a field K = k(

√
a1, . . . ,

√
an), where all ai’s are in k and

are nonzero. Observe that k(
√

a1, . . . ,
√

an) = k[
√

a1, . . . ,
√

an] and for any field F and b ̸∈ F,
F(
√

b) = F[
√

b] = {α + β
√

b : α, β ∈ F}. This can be seen by rationalising the denominator.

The case char(k) ̸= 2

Theorem 1. Let k be a field of characteristic ̸= 2. Let a1, . . . , an ∈ k and let K = k(
√

a1, . . . ,
√

an).
Then [K : k] = 2n if and only if
(∗) all the products ai1 ai2 . . . air for 1 ≤ i1 < i2 < . . . < ir ≤ n, 1 ≤ r ≤ n, are nonsquares in k.

Proof.(⇐) The proof is by induction on n.
If n = 1, then a1 is a nonsquare in k, so that √

a1 /∈ k, and [K : k] = 2.

1Talk given on 3rd August 2021 at Bhaskaracharya Pratishthana, Pune, in Symposium in Number Theory in honour
of 60th Birthday of Prof. Dinesh Thakur.
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Assume the result for n − 1, i.e. if (∗) holds for any b1, . . . , bn−1 ∈ k, then
[k(

√
b1, . . . ,

√
bn−1) : k] = 2n−1.

Assume that (∗) holds for a1, . . . , an. Then it also holds for a1, . . . , an−1 so that for k0 = k(
√

a1, . . . ,√
an−1), [k0 : k] = 2n−1. Note that if F = k(

√
a1, . . . ,

√
an−2), then k0 = F(

√
an−1) with √

an−1 /∈ F.
Now to show that [K : k] = 2n, it suffices to prove that √

an /∈ k0. Assume the contrary. Then

√
an = α + β

√
an−1 (2.1)

where α, β ∈ F. Squaring

an = α2 + an−1β2 + 2αβ
√

an−1. (2.2)

If both α, β are nonzero, then as char(k) ̸= 2, from (2.2) we see that √
an−1 ∈ F,

a contradiction.
If α = 0, then by (2.1), √anan−1 ∈ F = k(

√
a1, . . . ,

√
an−2). Hence by induction assumption,

(∗) does not hold for a1, . . . , an−2, anan−1. Hence some product of a1, . . . , an−2, anan−1 and thus also
of a1, . . . , an−1, an is a nonsquare. This contradicts that (∗) holds for a1, . . . , an.

If β = 0, then √
an ∈ F = k(

√
a1, . . . ,

√
an−2) and we get a similar contradiction.

(⇒) Conversely, assume that [K : k] = 2n. Then a1, . . . , an are nonzero.
If a product ai1 . . . air is a square in k, then √ai1 ∈ k(√ai2 , . . . ,

√air), so that K is generated over k
by elements from the set {√a1, . . . ,

√
an} − {√ai1}. This implies that [K : k] ≤ 2n−1, a contradic-

tion.
This completes the proof of the theorem.

If char(k) = 2, then the condition (∗) in the above theorem is necessary (the same proof works)
but not sufficient. For example, let char(k) = 2 and let a be a nonsquare in k. Then [k(

√
a) : k] = 2

as expected; however,
√

a + 1 =
√

a + 1, so that [k(
√

a,
√

a + 1) : k] = [k(
√

a) : k] = 2, although
a, a + 1 and a2 + a are all nonsquares in k.

To facilitate writing the corresponding condition when char(k) = 2, define

Tn = ϕ ∪ {(i1, . . . , ir) | 1 ≤ i1 < i2 < . . . < ir ≤ n, 1 ≤ r ≤ n}, (2.3)

n being a nonnegative integer. Thus Tn is the set of subsets of {1, 2, · · · , n}, including the empty
set. Tn has 2n elements. The elements s of Tn are subsets or ordered tuples written in increasing or-
der. Thus e.g. s = (1, 3, 4, 6) or {1, 3, 4, 6} where 1,3,4,6 are elements of s and we write 1, 3, 4, 6 ∈ s.

We define Aϕ = 1 and for s = (i1, . . . , ir) ∈ Tn, let As denote the product ai1 . . . air . If
K = k(

√
a1, . . . ,

√
an), by rationalising denominators, K = k[

√
a1, . . . ,

√
an]. We can then write

every element of K as ∑s∈ Tn

√
Asbs for some bs ∈ k.

For each n ≥ 0, consider the 2n variables Xs for s ∈ Tn. Consider the quadratic form fn =

∑s∈ Tn
AsX2

s . We may write, for convenience, Xϕ = X0 and for s = (i1, . . . , ir) ∈ Tn, Xs = Xi1,...,ir .
Thus we have f0 = X2

ϕ = X2
0 and f1 = X2

ϕ + a1X2
{a1} = X2

0 + a1X2
1 . Similarly, f2 = X2

0 + a1X2
1 +

a2X2
2 + a1a2X2

1,2.
Then for char(k) ̸= 2, we can put Theorem 1 in the following form. This is done just for

comparison with the case char(k) = 2.

Theorem 1′. Let char(k) ̸= 2. Let a1, . . . , an ∈ k and K = k(
√

a1, . . . ,
√

an). Then [K : k] = 2n if
and only if for each m such that 1 ≤ m ≤ n, am is not representable by the quadratic form

fm−1 = ∑
s∈ Tm−1

AsX2
s , (2.4)
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with values of Xs in k and with all Xs, except one, being zero.
Proof: If for every m such that 1 ≤ m ≤ n, am is not representable by fm−1 with all Xs except
one being zero, then for every s ∈ Tm−1, am ̸= Asb2

s for every bs ̸= 0; so am As ̸= A2
s b2

s , for every
bs ̸= 0, and so is a nonsquare. Thus As∪{m} is a nonsquare for every s ∈ Tm−1. Hence for every
s ∈ Tn − {ϕ}, As is a nonsquare. Hence by Theorem 1, [K : k] = 2n. The converse is similar.

Note that for char(k) ̸= 2, for [K : k] = 2n, it can happen that am is representable by fm−1
with two or more Xs nonzero, e.g. for k = Q, a1 = 2, a2 = 3, we have 3 = 12 + 2 · 12, so that a2 is
represented by f1 = X2

0 + a1X2
1 although Q(

√
2,
√

3) = 22.

The case char(k) = 2

For char(k) = 2, we have the following
Theorem 2. Let char(k) = 2. The following are equivalent.

1. [k(
√

a1,
√

a2, . . . ,
√

an) : k] = 2n.

2. For each 1 ≤ m ≤ n, am is not representable by the quadratic form fm−1 = ∑
s∈ Tm−1

AsX2
s with

values of Xs in k.

3. The quadratic form fn is anisotropic over k, i.e. fn = 0 has no nonzero solution over k.

4. The 2n elements As, s ∈ Tn, are linearly independent over k0, where k0, is the subfield of k
consisting of the squares of elements of k.

Proof. (1) ⇒ (2): If for some m, am = ∑
s∈ Tm−1

Asb2
s , with bs ∈ k, then

√
am = ∑

s∈ Tm−1

√
Asbs ∈ k(

√
a1, . . . ,

√
am−1) so that [k(

√
a1, . . . ,

√
am) : k] ≤ 2m−1,

a contradiction.
(2) ⇒ (1): Conversely, if am is not represented by fm−1, then am ̸= ∑

s∈Tm−1

Asb2
s , bs ∈ k. So,

√
am ̸= ∑

s∈Tm−1

√
As bs, for any bs ∈ k. Hence √

am /∈ k(
√

a1, . . . ,
√

am−1) as {
√

As | s ∈ Tm−1}

generates k(
√

a1, . . . ,
√

am−1) as a vector space over k. This is true for each m, 1 ≤ m ≤ n. Hence
[k(

√
a1, . . . ,

√
an) : k] = 2n.

(3) ⇒ (2). If (2) is false, then there is m, 1 ≤ m ≤ n such that am is representable by fm−1 over k.
This gives a nonzero solution for fn = 0 over k, so (3) is false. Hence (3) ⇒ (2).
(2) ⇒ (3): The proof is by induction on n. If n = 1, suppose f1 = X2

0 + a1X2
1 is isotropic.

So for some (b0, b1) ̸= (0, 0), b2
0 + a1b2

1 = 0. If b1 = 0, then b0 = 0. Hence, b1 ̸= 0. Hence
a1 = −b2

0/b2
1 = b2

0/b2
1 is representable by f0 = X2

0, which contradicts (2).
Let n ≥ 2 and suppose (2) ⇒ (3) holds upto n− 1. Suppose that the quadratic form fn is isotropic
over k. Thus there are bs ∈ k, s ∈ S such that some bs ̸= 0 and ∑s∈ Tn

Asb2
s = 0. Here if for every

s ̸= ϕ, bs = 0, then bϕ = 0. Hence there is s ̸= ϕ such that bs ̸= 0. Let m be the largest such that
m ∈ s and bs ̸= 0 for some s ∈ Tm. Thus bs = 0 whenever i ∈ s for some i > m.
If m = 1, then b2

0 + a1b2
1 = 0, with b1 ̸= 0. So a1 is representable by f0, contradicting (2). So

m > 1. Again, 0 = ∑s∈ Tm
Asb2

s = (∑s∈Tm−1
Asb2

s ) + am(∑s∈Tm−1
Asb2

s∪{m}) = Q0 + amQ1 say. Now
√

Q0 = ∑s∈Tm−1

√
Asbs and

√
Q1 = ∑s∈Tm−1

√
Asbs∪{m} are both in k[

√
a1, . . . ,

√
am−1]. Here, if

Q1 ̸= 0, then am =
Q0

Q1
. Taking square roots, √

am ∈ k(
√

a1, . . . ,
√

am−1) = k[
√

a1, . . . ,
√

am−1].
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Hence √
am = ∑s∈Tm−1

cs
√

As, for some cs ∈ k. Hence am = ∑s∈Tm−1
Asc2

s , so that am is rep-
resentable by the quadratic form fm−1. This contradicts (2). Hence Q1 = 0. Now, by the
assumption on m, for some s ∈ Tm−1, bs∪{m} ̸= 0, so the quadratic form ∑s∈Tm−1

asX2
s is isotropic.

As 1 ≤ m − 1 < n, by induction hypothesis, for some r, 1 ≤ r ≤ m − 1, ar = ∑s∈Tr−1
Ase2

s for some
es ∈ k. This again contradicts (2). This proves (2) ⇒ (3).

(3) ⇔ (4): Since char(k) = 2, the set k0 of squares in k forms a subfield of k. Suppose (4) is false.
Then the 2n elements As, s ∈ Tn, are linearly dependent over k0. Thus there are elements b2

s in k0,
not all zero, with bs in k, such that ∑s∈Tn

b2
s As = 0. Hence fn is isotropic. i.e. (3) is false. Thus

(3) ⇒ (4). Similarly (4) ⇒ (3). This proves the theorem.

Remark. Using Theorem 1 and Theorem 2, one can determine [k(
√

a1, . . . ,
√

an) : k] if one has
sufficient information about k. Thus if char(k) ̸= 2, then from the set S = {a1, . . . , an} drop ai
where i is the least such that a certain product (of entries from S) of the form aj1 aj2 . . . ajr ai, 1 ≤
j1 < j2 < . . . < jr ≤ i − 1, 0 ≤ r ≤ i − 1 is a square. Continue the process with the remaining set.
If finally t aj’s remain, then
[k(

√
a1, . . . ,

√
an) : k] = 2t and the extension field is generated by the square roots the remaining

t aj’s.

Example 1. K = Q(
√
−10,

√
2
15 ,

√
−6,

√
2,
√

1
15 ,

√
7
5 ).

Here we consider the set S = {−10, 2
15 ,−6, 2, 1

15 , 7
5}.

We list the elements and their products with all previous products of distinct elements. If an
element or its product with a previous product is a square, then we drop that element from S and
continue. Thus we have the sets {−10}, { 2

15 ,− 4
3}, {−6, 60,− 4

5 , 8} consisting of nonsquares. So
keep −10, 2

15 and −6 in S. The next number 2 when multiplied with 8 gives 16, which is a square,
so drop 2 from S. Next 60 · 1

15 is a square. So drop 1
15 from S. 7

5 cannot be dropped as its product
with previous products contains 7 with first power, so we get nonsquares. Hence

K = Q(
√
−10,

√
2
15 ,

√
−6,

√
7
5 ) and [K : Q] = 24 = 16.

Example 2. If a1, . . . , an are nonsquare integers relatively prime in pairs, then [Q(
√

a1, . . . ,
√

an) :
Q] = 2n.
Example 3. Let f1(x), . . . , fn(x) be nonsquare polynomials over C, which are relatively prime in
pairs. Let K = C(x)(

√
f1(x), . . . ,

√
fn(x)). Then [K : C(x)] = 2n.

Example 4. Let R be a UFD (Unique Factorisation Domain) of characteristic ̸= 2. Let K be the
quotient field of R. Let a1, . . . , an be nonunit nonsquares in R and relatively prime in pairs. Then
[K(

√
a1, . . . ,

√
an) : K] = 2n.

Example 5. Let F be of characteristic 2. Let a be a nonsquare in F, Then a3 + a+ 1 is representable
as X2

0 + aX2
1 for X0 = 1 and X1 = a+ 1. Thus [F(

√
a,
√

a3 + 1) : F] ̸= 22 and this degree must be 2.
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Abstract: Ramanujan Birthday Magic square (RBMS) is one of the interesting contributions of
the great Indian mathematician Srinivasa Ramanujan involving his birthday 22-12-1887. In this
article we discuss these magic squares and their properties.

3.1 Introduction

Magic squares have fascinated mathematicians and mathematics lovers for centuries. The leg-
endary mathematical genius Srinivasa Ramanujan has also contributed to the theme an ingenious
construction of 4 × 4 magic square, with 4 parameters. In this article we present its construction
and discuss some of its interesting properties. We begin with the definition of a magic square.

Definition 1. A magic square of order n is an n × n square grid with n2 distinct positive integer
entries, such that the sums of the entries in each of the rows, each of the columns and also of the
entries along each of the two diagonals, is the same number; the latter is called the magic constant
or the magic sum, the entries in the cells of the magic square are called the magic numbers.

Ramanujan introduced the remarkable magic square of order 4,

A B C D
D + 1 C - 1 B - 3 A + 3
B - 2 A + 2 D + 2 C - 2
C + 1 D - 1 A + 1 B - 1

(1)

allowing four independent parameters A, B, C, D, which only need to be distinct positive integers
for which that all the entrees in the square are distinct positive integers. We note that the entries
of the square are made up of four quadruplets (A, A + 1, A + 2, A + 3), (B − 3, B − 2, B − 1, B),
(C − 2, C − 1, C, C + 1) and (D − 1, D, D + 1, D + 2), and the condition on the parameters A, B, C
and D is precisely that the four blocks consist of positive integers and are disjoint from each other.
The condition holds in particular if for every pair of numbers picked from the set of values chosen
for A, B, C and D differ by 7 or more; (this is however not a necessary condition). This shows that
we have here an infinite collection of such magic squares. Moreover, we can also have several such
magic squares for which the magic constant is the same.
In (1) if we choose A = 22, B = 12, C = 18, D = 87, we get the magic square

22 12 18 87
88 17 9 25
10 24 89 16
19 86 23 11

(2)

in which the first row is Ramanujan’s birthdate (22-12-1887). In this context we shall call any
magic square arising as in (1) from various admissible choices, a Ramanujan’s Birthday Magic
Square (RBMS for short).

An RBMS can be constructed analogously with other birthdays appearing as the first (or any
other specific) row. However, not all birthdays are suited for this, as the conditions needed for
all the entries to be positive integers and distinct may not be satisfied; in particular, for persons
who are born in the months January, February or March we do not get an RBMS as above. Niels
Henrik Abel, a Norwegian mathematician, who made pioneering contributions in a variety of fields,
was born on 5th August, 1802. It can be seen that for this birthdate we cannot construct an RBMS
as above.
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3.2 Identities satisfied by the entries of RBMS

Let S be the set of 16 pairs (i, j), with i and j between 1 and 4. We shall say that a subset T of S
consisting of 4 elements is cross-sectional for RBMSs if the entries in the square (1) corresponding
to the coordinate entries from T involve all of the parameters A, B, C, and D. For example, the
subsets (1, 1), (1, 2), (2, 1), (2, 2), and (1, 2), (2, 2), (3, 3), (4, 3) are cross-sectional. As each of the
parameters occurs in the square (1) at 4 places, and they can be chosen independently, we see that
there are 256 cross-sectional subsets. We note that if T is a cross-sectional subset then for any
RBMS with magic constant K the sum of the entries of the RBMS corresponding to T is K + t ,
where t is a number between −6 and 6, depending only on T; when T is cross-sectional, the entries
in (1) corresponding to its elements are of the form A + a, B + b, C + c and D + d, for some a, b, c
and d between −3 and 3, and hence the sum is A + B + C + D + a + b + c + d = K + t, where
t = a + b + c + d; since a, b, c and d depend on the positions of the elements of T (and not on the
values of A, B, C, D), it follows that t depends only on T.

As there are 256 cross-sectional subsets and only 13 possible values of t, we see that there would
be numerous blocks for which the corresponding sums are equal, not only for the given RBMS but
also for all of them with the same value of the magic constant. The author has explored many of
these identities further, and hopes to discuss the topic further elsewhere. It may be noted that the
value t being 0 corresponds to the sum corresponding to the subset being K, the magic constant
of the square. These include the rows, the columns, the two diagonals, and also subsets consisting
of (i, j) with j from 1, 2 with i taking any two values between 1 and 4, and similarly with j from
3, 4 with i taking any two values between 1 and 4, ensuring that the subsets are cross-sectional.

3.3 Magic Squares with consecutive positive integers

One may ask whether one can construct an RBMS whose entries are 16 consecutive positive
integers. We present here an affirmative answer to this, and also give a count of the number of
ways in which it can be done. We note that without loss of generality we may assume the integers to
be 1 to 16. Recall that the entries are made up of (A, A + 1, A + 2, A + 3), (B − 3, B − 2, B − 1, B),
(C − 2, C − 1, C, C + 1) and (D − 1, D, D + 1, D + 2), which consist of consecutive integers. If they
are to make up entries of an RBMS, their entries must be disjoint. Consequently, their entries
should cover the set of integers from 1 to 16 if and only if the collection of the 4 subsets as
above coincides with the collection of the 4-element subsets of the form (k, k + 1, k + 2, k + 3), with
k = 1, 5, 9, and 13. Namely, to each one of the above subsets we need to associate one of these,
in a one-one correspondence, and, conversely, setting up any such correspondence gives rise to a
magic square.

For example, if we choose to follow for the choice the order in which the sets are written, viz.
A, B, C, D, we should have A = 1, B − 3 = 5, C − 2 = 9, and D − 1 = 11, it entails A = 1, B =
8, C = 11 and D = 14 and substituting the values we get the RBMS

1 8 11 14
15 10 5 4
6 3 16 9
12 13 2 7

(3)

Setting up a correspondence as required above is readily seen to correspond to choosing an order
on the values to be assigned to A, B, C, D. Once we choose an order, say for example B, C, A, D as
the order of the numbers (from 1 to 16) to be associated with them, then that forces the choice for
A, B, C, D, which for this example will be B − 3 = 1, C − 2 = 5, D − 1 = 9 and A = 13. Conversely,
any RBMS with entries from 1 to 16 corresponds to a choice in the order for A, B, C, D (as the
4-element sets as above are disjoint and contain exactly one element from these). Since there are 24
ways in which we can choose an order between A, B, C, D it follows that there are 24 such RBMSs;
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we note that they are all distinct since the order among A, B, C and D is reflected in the first row
of the magic square.
Acknowledgement: I sincerely thank the Reviewer for meticulously reading the manuscript and
rewriting it. I profusely thank Prof. V. G. Tikekar, Prof. S. A. Katre and Prof. J. N. Salunke for
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4.1 An Upper Bound On Ramsey Number Improved

Four mathematicians (from left to
right) Julian Sahasrabudhe, Rob Mor-
ris, Simon Griffiths and Marcelo
Campos have found a new upper
limit to the “Ramsey number”, a cru-
cial property describing unavoidable
structure in graphs.

In the March 16 seminars, and in a paper posted later that evening, the researchers announced an
improvement in the upper bound on the Ramsey number by an exponential factor.
The Ramsey number describes how many nodes a complete graph must contain, to be forced to
have a certain structure, say the edges of a complete graph are assigned one of two colors: red
or blue. And say you try to color the edges in a way that avoids connecting a group of k nodes
with edges of the same color. In 1930, Frank Ramsey proved that when a graph is big enough, it
becomes impossible to avoid creating what is called a monochromatic clique, namely a group of
nodes whose common edges are either all red, or all blue.
The question is: How big, exactly, must a graph be before a monochromatic clique is forced to
emerge?

The answer depends on the size (number of nodes) of the clique. Ramsey showed that there exists
a number R(k), now called the diagonal Ramsey number, representing the minimum number of
nodes for which a monochromatic clique of a given size k must exist, no matter how the edges are
colored. Figure 2 shows that if we take a complete graph K5 then it is possible to color each edge
red or blue without creating a monochromatic clique of size 3 but for K6 there is no way to avoid
creating a monochromatic clique of size 3 and hence the Ramsey number R(3) = 6. It wasn’t until
1955 that R(4) was pinned down at 18. R(5) remains unknown - it is at least 43 and no bigger
than 48, and R(10) has been estimated to lie between 102 and 23,556. Mathematicians are seeking
a formula that will give a good estimate of R(k), especially when k is extremely large.
The paper in which Ramsey introduced the number named after him was published in the Pro-
ceedings of the London Mathematical Society just weeks before he died, at the age of 26.
Five years later, Erdös and Szekeres showed that the Ramsey number R(k) is less than 4k. And 12
years after that, Erdös showed that it is bigger than about

√
2

k. This was achieved by calculating
the probability that a graph with randomly colored edges contains a monochromatic clique. This
“probabilistic” technique became very influential in Graph theory. It also trapped R(k) between
two exponentially growing numbers:

√
2

k and 4k.
This January, Campos, Griffiths, Morris and Sahasrabudhe, decided to switch to another version of
the problem, namely finding bounds on the “off-diagonal” Ramsey number R(k, l), which measures
how big a graph must be before it contains either a red clique with k nodes, or a blue clique with
l nodes. They found a way to delete a bunch of blue edges at once following a particular protocol,
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which increased the density of red edges, and led to an improved bound on the off-diagonal Ramsey
number. This method, called a “density increment” argument then used to improve the upper
bound on the Ramsey number by an exponential factor. They have claimed to have shown that
R(k) < 3.993k.
Source: https://www.quantamagazine.org/after-nearly-a-century-a- new-limit-for-patterns- in -
graphs -20230502/

4.2 Ninth Dedekind Number Computed

Scientists at Paderborn University in Germany and KU Leuven University in Belgium have dis-
covered the ninth Dedekind number, which experts have been looking for since 1991.
The Dedekind numbers were first defined by Richard Dedekind in 1897, and have interested math-
ematicians ever since. The Dedekind number D(n) counts the number of monotone Boolean
functions of n variables. A Boolean function is a function that takes as input n Boolean variables
(that is, values that can be either false or true, or equivalently binary values that can be either 0
or 1), and produces as output another Boolean variable. It is monotonic if, for every combination
of inputs, switching one of the inputs from false to true can only cause the output to switch from
false to true (and not from true to false).
The first eight Dedekind numbers have been known and their exact values are 2, 3, 6, 20, 168, 7581,
7828354, 2414682040998, 56130437228687557907788. The first six of these numbers were given by
Church (1940). D(6) was calculated by Ward (1946), D(7) was calculated by Church (1965) and
Berman & Köhler (1976), and D(8) was calculated by Wiedemann (1991). The ninth one D(9)
has remained elusive until now. Now, in 2023 Christian Jäkel from Technische Universität Dres-
den, Germany and Lennart Van Hirtum, Master student at KU Leuven and currently a research
associate at the University of Paderborn, simultaneously determined D(9).
The eighth Dedekind number was found using the most powerful computer of that time - a Cray
2. Lennart Van Hirtum and his team found D(9) by performing computations on the Noctua 2
supercomputer at the Paderborn Center for Parallel Computing. The team ran the computation
on this supercomputer for approximately five months. On March 8, 2023, the team found the
ninth Dedekind number: 286386577668298411128469151667598498812366, having 42 digits.
Sources:

1. https://interestingengineering.com/innovation/supercomputer-ninth-dedekind-number- prob-
lem

2. https://www.sciencealert.com/mathematicians-discover-the-ninth-dedekind-number-after- 32
years-of-searching

3. https://en.wikipedia.org/wiki/Dedekind_number

4.3 Computer Scientists Prove Decades Old Problem Of Size Of A Set
Of Integers

In 1936, Erdös and Turán published a paper that sparked nearly a century of research into the
size of integer sets that avoid arithmetic progressions.

Zander Kelley (left), a graduate student at the University of Illinois,
Urbana-Champaign and Raghu Meka (right) of the University of
California, Los Angeles, both computer scientists, have found a
new - and dramatically lower limit on the size of a set of integers
bounded by a given number in which no three of them are evenly
spaced (ruling out combinations like 3, 8 and 13 or 101, 201 and
301). Their claim smashed the previous record from 2020.

Kelley and Meka have focused on arithmetic progressions made up of just three numbers,
following a line of research often traced to a 1936 paper by Paul Erdös and Paul Turán. Erdös
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and Turán wanted to know how many numbers smaller than some ceiling N can be put into a set
bounded without creating any three-term arithmetic progressions. N might be 1,000, 1 million, or
some unimaginably huge number. They conjectured that as N grew larger, a set without three-
term progressions would have to become incredibly sparse. There is some structure that is going
to pop into the set, no matter how one chose the set. How large a set does one really need to
guarantee that this structure in there?
In 1946, Felix Behrend found a way to construct sets of numbers between 1 and N not containing
any three-term progressions. His method resulted in sets that got bigger as N did, but achingly
slowly. When N is 100,000, Behrend’s set contains just 171 elements. When N is 1 million, his
set has 586 numbers - less than 0.06% of the numbers between 1 and 1 million. Until Kelley and
Meka’s paper arrived, the maximum size of a progression-free set was penned in from below by
Behrend’s formula and from above by Bloom and Sisask. In their paper from July 2020 they showed
that a progression-free set must have substantially fewer than N/(logN) elements. Together with
Kelley, Meka showed that for some constant k > 0, the size of progression-free subset of integers
{1, 2, . . . , N} of size at least N · 2−O((logN)k) as compared to previously known N/(logN)1+c for a
constant c > 0.
Sources:

1. https://www.quantamagazine.org/surprise-computer-science-proof-stuns-mathematicians - 20
230321/

2. https://gilkalai.wordpress.com/2023/02/14/absolutely-sensational-morning-news-zander- kel-
ley -and-raghua meka-proved-behrend-type-bounds-for-3aps/

4.4 A Shape With A Pattern that Never Repeats

Experts have searched for decades for a polygon that only makes non-repeating patterns. But no
one knew it was possible until now.

Figure 1

From bathroom floors to honeycombs or even groups of
cells, tilings surround us. These patterns cover a space
without overlapping or leaving any gaps. Like a rug filled
with diamond shapes, where each section looks the same
as the one next to it. Until now every tiling ever recorded
has eventually repeated itself. After decades of search-
ing for mathematicians call an “einstein tile (named for
the German words for “one stone”, or one tile)” - an
elusive shape producing a tiling which does not repeat -
researchers say they have finally identified one. The 13-
sided figure is the first that can fill an infinite surface
with a pattern that is always original.
Repeating patterns have translational symmetry, mean-

ing you can shift one part of the pattern and it will overlap perfectly with another part, without
being rotated or reflected. The new shape described does not have translational symmetry - each
section of its tiling looks different from every part that comes before it.

Now, (from left to right) David
Smith, a retired printing technician
and nonprofessional mathematician
of the East Riding of Yorkshire, Craig
S. Kaplan, a computer scientist at
the University of Waterloo, Canada,
Chaim Goodman-Strauss of Univer-

sity of Arkansas and Joseph Myers, a software developer in Cambridge, England came up with
the shape that could be a solution to the long-standing “einstein problem”. Kaplan and Smith had
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gotten about halfway through the problem, and Goodman-Strauss and Myers were able to sort of
fill in the rest of the puzzle and complete the proof. The team published a preprint paper detailing
the findings on the site arXiv. The “einstein” tile is made up of eight kites, or four-sided polygons
with two pairs of adjacent, equal-length sides (see Figure 1). Researchers call it “the hat” because
of its resemblance to a cap. The shape is simpler than some experts expected it to be.

Figure 2

Less than a week after this paper came out, Smith
emailed Kaplan a new shape. Kaplan refused to
believe it at first. But analysis confirmed that the
new Tile was a “non-reflective Einstein”. Something
still bothered them - while this tile could go on for-
ever without repeating a pattern, this required an
“artificial exclusion” against using a flipped shape.
So, they added little notches or curves to the edges,
ensuring that only the non-flipped version could be
used, creating “the spectre”. In Figure 2, the original
hat shape (left) and the new spectre shape (right)

can be easily seen.
In the 1970s, Nobel-winning mathematician Roger Penrose discovered that two shapes could form
a non-repeating tiling pattern together, prompting hopes that a single shape may be found to do
this one day. Researchers have been able to make other non-repeating patterns in the past, but
the challenge has been finding a shape that can only make a non-repeating pattern. The shape of
“the hat” can also be morphed to form additional tile shapes that make non-repeating patterns.
This new finding could lead to materials science investigations - for example, shapes that form
non-repeating tilings could help design stronger materials. The elusive shape might also spark
creative inspiration for new decorative designs or art.
Sources:

1. https://www.theguardian.com/science/2023/apr/03/new-einstein-shape-aperiodic- monotile
2. ttps://en.prothomalo.com/science-technology/science/qq3lo25tnu

3. https://www.smithsonianmag.com/smart-news/at-long-last-mathematicians- have- found- a
-shape-with-a-pattern-that-never-repeats-180981899/

4.5 Existence Of (N,K,T) Subspace Design

The study of designs can be traced back to 1850, when Thomas Kirkman, a priest in a community
in the north of England who experimented in mathematics, posed a seemingly straightforward
problem in a magazine called the Lady’s and Gentleman’s Diary. Say 15 girls walk to school in
rows of three every day for a week. Can you arrange them so that over the course of those seven
days, no two girls ever find themselves in the same row more than once? Soon, mathematicians
were asking a more general version of Kirkman’s question: If you have n elements in a set (our 15
schoolgirls), can you always sort them into groups of size k (rows of three) so that every smaller set
of size t (every pair of girls) appears in exactly one of those groups? Such configurations, known as
(n, k, t) designs, have since been used to help develop error-correcting codes, design experiments,
test software, and win sports brackets and lotteries.
In 2014, Peter Keevash showed that even if you do not know how to build such designs, they always
exist, so long as n is large enough and satisfies certain simple conditions.
For decades, mathematicians have translated problems about sets and subsets - like the design
question - into problems about the so-called vector spaces and subspaces.
The subspace design problem deals with n-dimensional vector spaces and their subspaces. In such
vector spaces - again, so long as n is sufficiently large and satisfies simple conditions - can you
find a collection of k-dimensional subspaces such that any t-dimensional subspace is contained in
exactly one of them? Such an object is called an (n, k, t) subspace design.
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In the 50 years, since mathematicians started thinking about this problem, they have found only
one nontrivial example: In a 13-dimensional vector space, it is possible to cover two-dimensional
subspaces with three-dimensional ones exactly once. The result required a massive computer-
based proof, because even for such small values of n, k and t, you end up working with millions of
subspaces.

Now (left to right) Mehtaab Sawhney, Ash-
win Sah, graduate students at MIT, and Peter
Keevash (Professor of Mathematics at Univer-
sity of Oxford), have proved the existence of
“subspace designs” whose existence is not at all
obvious. For that they tested the limits of sev-
eral well-known methods in combinatorics.
To do so, they had to revamp Keevash’s original

approach - which involved an almost magical blend of randomness and careful construction - to
get it to work in a much more restrictive setting.
In the end, the work illustrated yet another counterintuitive way that mathematicians can attach
the forces of randomness to search for hidden structure.
Source: https://www.quantamagazine.org/mathematicians-find-hidden-structure-in-a- common -
type -of-space-20230412/

4.6 The Invariant Subspace Problem Solved?

Two weeks ago, a modest-looking paper was uploaded to the arXiv preprint server with the unas-
suming title “On the invariant subspace problem in Hilbert spaces.” The paper is just 13 pages
long and its list of references contains only a single entry. The paper implicates to contain the
final piece of a jigsaw puzzle that mathematicians have been picking away at for more than half a
century: the invariant subspace problem.

The author of this short note, Swedish mathematician Per Enflo, almost
80, has made a name for himself solving open problems, and has quite a
history with the problem at hand. The invariant subspace problem is about
spaces with an infinite number of dimensions, and it asks whether every linear
operator in those spaces must have an invariant subspace. More precisely:
the invariant subspace problem asks whether every bounded linear operator
T on a complex Banach space X admits a non-trivial invariant subspace M
of X, in the sense that there is a subspace M ̸= {0}, of X such that T(M)
is contained back in M. Stated in this way, the invariant subspace problem
was posed during the middle of last century, and eluded all attempts at a

solution. Many variants of the problem have been solved, by restricting the class of bounded
operators considered or by specifying a particular class of Banach spaces. The problem is still
open for separable Hilbert spaces (in other words, each example, found so far, of an operator with
no non-trivial invariant subspaces is an operator that acts on a Banach space that is not isomorphic
to a separable Hilbert space).
The first breakthrough was made by Enflo in the 1970s (although his result was not published
until 1987). He answered the problem in the negative, by constructing an operator on a Banach
space without a non-trivial invariant subspace.
Well, Enflo settled the problem for Banach spaces in general. However, resolving the invariant
subspace problem for operators on Hilbert spaces has been stubbornly difficult, and it is this
which Enflo claims to have achieved. This time Enflo answers in the affirmative: His paper claims
to prove that every bounded linear operator on a Hilbert space does have an invariant subspace.
Since earlier some attempts of mathematicians to prove the statement have turned out to be flawed,
one would have to wait for a due pear review process to confirm the present proof to be correct.
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If correct, it will be a remarkable achievement, especially for someone who has already produced
so many remarkable achievements over such a large span of time.
Enflo has been one of the great problem-solvers in functional analysis. His many contributions
to mathematics, and his answers to many open problems, have made a big impact on the field,
generating new techniques and ideas. Aside from his work on the invariant subspace problem,
Enflo solved two other major problems - the basis problem and the approximation problem - both
of which had remained open for more than 40 years.
Source: https://phys.org/news/2023-06-mathematician-invariant-subspace-problem.html

4.7 US Teens Say they Have New Proof For Pythagorean Theorem

Two high school students Calcea Johnson and Ne’Kiya Jackson from New Orleans are making major
waves in the world of academia after solving a mathematical equation involving the Pythagorean

Theorem that has stumped mathematicians for the last 2,000
years. They found a new way to prove the Pythagorean The-
orem using trigonometry without circular logic and presented
their findings at the American Mathematical Society’s Annual
Southeastern Conference on March 18, 2023 in Atlanta.
According to their presentation, they noted that even the
most notable mathematicians had thought that solving the
Pythagorean Theorem without using circular logic was impos-

sible. There are no trigonometric proofs, because all the fundamental formulae of trigonometry
are themselves based upon the truth of the Pythagorean Theorem. Yet Johnson and Jackson knew
that was not true, and they proved it.
“In our lecture we present a new proof of Pythagoras’ Theorem which is based on a fundamental
result in trigonometry - the Law of Sines - and we show that the proof is independent of the
Pythagorean trigonometric identity sin2 x + cos2 x = 1”, they said. In short, they claim to have
proven the theorem using trigonometry and without resorting to circular reasoning.

Calcea Johnson and Ne’Kiya Jackson are being encouraged to submit their work to a peer-
reviewed journal.
Sources:

1. https://theblackwallsttimes.com/2023/03/28/new-orleans-teens-solve-impossible- mathemat-
ical -equation/

2. https://www.theguardian.com/us-news/2023/mar/24/new-orleans-pythagoras- theorem -trig-
onometry-prove

4.8 First Year Graduate Student Finds Paradoxical Set

Mathematicians rejoice when they prove that seemingly impossible things
exist. Such is the case with a new proof posted online in March by Cédric
Pilatte, a first-year graduate student at the University of Oxford. Pilatte
proved that it is possible to create a set that satisfies two apparently
incompatible properties. The first is that no two pairs of numbers in the
set add up to the same total. For example, add together any two numbers
in 1, 3, 5, 11 and you will always get a unique number. It is easy to
construct small “Sidon” sets like this one, but as the number of elements
increases, so too does the likelihood that the sums will coincide, destroying
the Sidon-ness of the set.

The second requirement is that the set must be very large. It must be infinite, and you should be
able to generate any sufficiently large number by adding together at most three numbers in the
set. This property, which makes the set an “asymptotic basis of order 3”, requires a large, dense
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set of numbers. Sidon sets are constrained to be small, and an asymptotic basis is constrained to
be large.
The question of whether such a set exists has remained open for decades, ever since it was posed by
the prolific Hungarian mathematician Paul Erdös and two collaborators, in 1993. Erdös’ fascination
with Sidon sets can be traced to a conversation he had in 1932 with their inventor Simon Sidon,
who at the time was interested in understanding the growth rate of these sets.
Sidon sets arise in a variety of mathematical contexts including number theory, combinatorics,
harmonic analysis and cryptography, but the simple question of how big they can get has been
a lasting mystery that Erdös considered for much of his career. In 1969, Bernt Lindström have
showed that largest possible Sidon set whose members are all less than some integer N, is smaller
than

√
N + 4

√
N + 1 and in 2021 another group of mathematicians tightened the bound to

√
N +

0.998 × 4
√

N. Sidon sets, in other words, have to be sparse.
It has long been known that a Sidon set cannot be an asymptotic basis of order 2, where any integer
can be expressed as the sum of at most two numbers. It was generally believed that an asymptotic
basis of order 3 could be constructed from a Sidon set, but proving this was another matter. In
2010, the Hungarian mathematician Sándor Kiss showed that a Sidon set can be an asymptotic
basis of order 5, in 2013 Kiss and two of his colleagues proved the conjecture for an asymptotic basis
of order 4. Two years later, the Spanish mathematician Javier Cilleruelo took these results a step
further by proving that it is possible to construct a Sidon set that is an asymptotic basis of order
3 + ε, meaning that any sufficiently large integer N can be written as the sum of four members of
the Sidon set, with one of them smaller than Nε for arbitrarily small positive ε. These findings
were obtained using variations of a probabilistic method pioneered by Erdös. Pilatte realized that
the probabilistic method had been pushed as far as it could go. So Pilatte took a different track,
turning instead to a procedure that uses the logarithms of prime numbers as the building blocks
of Sidon sets.
The search for a solution took Pilatte in an unexpected direction, away from additive number
theory and into the world of algebraic geometry, a branch of mathematics that studies the rela-
tionship between geometric shapes, like curves and surfaces, and the equations that define them.
Pilatte began by replacing numbers with polynomials, which immediately made the problem more
tractable. Using a recent result by the Columbia University mathematician Will Sawin on the
distribution of irreducible polynomials in arithmetic progressions, Pilatte was able to construct a
set that possessed just the right amount of randomness and just the right density of numbers to
satisfy Erdös’ constraints.
Erdös problems have a strange ability for unearthing connections between supposedly unrelated
branches of mathematics, and the discoveries mathematicians make while trying to answer them
are often more meaningful than the answers themselves.
Sources: https://www.quantamagazine.org/first-year-graduate-finds-paradoxical-number-set- 2023
0605/#: :text=Such%20is%20the%20case%20with,satisfies%20two%20apparently%20incompatible %
20properties.

4.9 Awards

4.9.1 Luis Caffarelli Awarded The 2023 Abel Prize For His Work On PDEs.

Argentinian-American Luis A. Caffarelli, 74 years old, a professor of math-
ematics at the University of Texas at Austin, is this year’s winner of the
Abel Prize - popularly known as Nobel prize of mathematics. The prize is
accompanied by 7.5 million Norwegian kroner, or about $7,00,000. Caffarelli
uncovered the interactions between solids and liquids, opening new doors
to medicine, the automotive industry and even knowledge of the universe.
There is no Nobel Prize in mathematics, and for decades the most prestigious
awards in mathematics were the Fields Medals, awarded in small batches
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every four years to the most accomplished mathematicians who are 40 or younger. The Abel prize,
named after Niels Henrik Abel, a Norwegian mathematician, is set up more like the Nobels. Since
2003 it has been given annually to highlight important advances in mathematics.
As a mathematician, Luis A. Caffarelli of the University of Texas at Austin tries to answer questions
that sound simple, but are not easy to answer:

• How does the shape of a piece of ice change as it melts?
• Can a smooth flow of water ever spin out of control?
• What is the shape of an elastic sheet stretched around an object?

The behavior in these and many other phenomena in the world around us - including the gyrations
of financial markets, the turbulence of river rapids and the spread of infectious diseases - can be
described mathematically, using partial differential equations. The equations can often be written
down simply, but finding exact solutions is devilishly difficult and indeed usually impossible. Yet,
Caffarelli was able to make major progress in the understanding of partial differential equations
even when complete solutions remain elusive. For those achievements, he is this year’s winner of
the Abel Prize. �
The Norwegian Academy of Science and Letters, which awards the prize, has highlighted his
results, especially in the so-called free boundary problems, such as those mathematical models of
what happens at the contact surface between water and ice, or in an alloy of different molten metals
that solidify at different rates. Caffarelli has also excelled by investigating into the Navier-Stokes
equations, which describe the flow of a viscous fluid, such as oil. The applications of his work are
incalculable: the analysis of a person’s blood circulation, the prediction of the movement of oil, the
manufacture of an automobile engine, financial mathematics, the refinement of the fundamental
models that explain the universe.
His Majesty King Harald V presented the 2023 Abel Prize to Caffarelli at the award ceremony in
the University of Oslo on May 23, 2023.
Source: https://www.nytimes.com/2023/03/22/science/abel-prize-math-luis-caffarelli.html

4.9.2 US Professors Shing-Tung Yau And Vladimir Drinfeld Awarded 2023 Shaw Prize
This year’s Shaw Prize in Mathematical Sciences is
awarded in equal shares to Prof. Shint-Tung Yau
(left), director of Yau Mathematical Sciences Cen-
ter at Tsinghua University and professor emeritus
at Harvard University, and Prof. Vladimir Drinfeld,
Harry Pratt Judson Distinguished Service Professor
of Mathematics at the University of Chicago. The
two laureates were chosen for their contributions re-
lated to mathematical physics, to arithmetic geome-

try, to differential geometry, and to Kähler geometry.
Prof. Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of
Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to
become Chair Professor of mathematics at Tsinghua University. He was awarded the Fields Medal
in 1982.
Prof. Drinfeld is a renowned mathematician from the former USSR, who emigrated to the United
States and is currently working at the University of Chicago. He was awarded the Fields Medal in
1990 and he received the Wolf Prize in Mathematics in 2018.
The Shaw Prize is awarded annually in three disciplines: astronomy, life sciences and medicine,
and mathematical sciences. Each prize carries a gold medal, a certificate, and a monetary award of
US $1.2 million. This will be the 20th year that the prize has been awarded, and the presentation
ceremony is scheduled for November 12, 2023 in Hong Kong.
Source: https://www.math.harvard.edu/harvard-professor-emeritus-shing-tung-yau-awarded- 2023-
shaw-prize/
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4.9.3 Prof. Sourav Chatterjee has been Elected as a Fellow of The Royal Society
Indian origin Prof. Sourav Chatterjee, Professor of Mathematics and Statistics, Stanford University
has been elected as a Fellow of the Royal Society (FRS). Fellowship of the Royal Society is a
recognition granted by the Royal Society of London to individuals who have made a “substantial
contribution to the improvement of natural knowledge, including mathematics, engineering science,
and medical science”. Fellowship of the Society, the oldest known scientific academy in continuous
existence, is a significant honour. It has been awarded to many eminent scientists throughout
history.

Sourav Chatterjee received the Bachelor of Statistics and Master of
Statistics degrees from the Indian Statistical Institute, Calcutta, in 2000
and 2002. He received the Ph.D. degree in Statistics from Stanford Uni-
versity in 2005. He joined UC Berkeley as a Neyman Assistant Professor
of Statistics in 2005, and started as a tenure-track assistant professor in
the UC Berkeley Statistics department in 2006. He moved to New York
University as an associate professor of Mathematics in the Courant In-
stitute of Mathematical Sciences in 2009. Since 2013, he has been a pro-
fessor of Mathematics and Statistics at Stanford University, California.
His areas of interest are probability theory, statistics, and mathematical
physics.

Dr. Chatterjee was awarded a Sloan Research Fellowship in mathematics in 2007, the 2008 Tweedie
New Researcher Award from the Institute of Mathematical Statistics, the 2010 Rollo Davidson
Prize for work in probability theory, the 2012 Doeblin Prize from the Bernoulli Society, the 2012
Young Researcher Award from the International Indian Statistical Association, and the 2013 Line
and Michel Loeve Prize in probability from UC Berkeley. He gave a Medallion Lecture of the Insti-
tute of Mathematical Statistics in 2012 and was an invited speaker at the International Congress
of Mathematicians in 2014. He was elected a Fellow of the Institute of Mathematical Statistics in
2018, and received the 2020 Infosys Prize in Mathematical Sciences.
Source: https://royalsociety.org/people/sourav-chatterjee-36210/

□ □ □

Indian FRS in Mathematical Sciences

1 S. Ramanujan (1918) 9 M.S. Narasimhan (1996)
2 C. Chandrashekhar (1944) 10 S.R.S. Varadhan (1998)
3 P.C. Mahalanobis (1945) 11 M.S. Raghunathan (2000)
4 S.N. Bose (i958) 12 C.S. Khare (2012)
5 C.R. Rao (1963) 13 Subhash Khot (2017)
6 Harishchandra (1973) 14 Manjul Bhargava (2019)
7 C.S. Seshadri (1988) 15 Akshay Venkatesh (2019)
8 Roddam Narasimha (1992) 16 Sourav Chatterjee (2023)
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5. Kalyanapuram Rangachari Parthasarathy
(25 June 1936 - 14 June 2023)

Kalyan B. Sinha
Emeritus Professor, ISI, INSA Senior Scientist, JNCASR Jakkur, Bangalore.

Email: kbs@jncasr.ac.in

Professor K.R. Parthasarathy (“Partha” to his western friends and
collaborators and KRP to the Indian Mathematical Community) passed
away on June 14, 2023. One of the handful of the legendary creators
of schools of excellence of modern Mathematics in India, KRP was an
expositor-par-excellence (both in lectures and in written articles) - a
“great teacher”. Like many very distinguished mathematicians he was
often ‘terse’, he would sometimes say that “Mathematics is about the
economy of thought and the economy of expression”. His absence will
be felt for a long time in the Indian Mathematical scene.

KRP was born in Chennai, Tamilnadu, had his early education (in-
cluding B.Sc. honours in Mathematics) in Chennai before joining the
3-year ‘advanced professional statisticians’ training course’ in the Indian

Statistical Institute (I.S.I. for short), Kolkata in 1956. The academic climate in I.S.I. in 1950’s
and 1960’s was somewhat unstructured and liberal and three bright young budding mathemati-
cians (V.S. Varadarajan, R. Ranga Rao and KRP), to be expanded a few years later to include
S.R.S. Varadhan, and named for posterity “the Famous Four”, taught each other much of mod-
ern mathematics. Nearly two decades later when I met KRP for the first time in I.S.I., Delhi,
he would often regale us with many stories of his time in Kolkata and talk about the ‘underlying
unity in Mathematics’; for example, among the Kolmogorov’s decomposition theorem, the Gelfand-
Naimark-Segal construction and Bochner’s theorem on positive definite functions. This point of
view had a major influence on many of us, including myself. However, this expansive (wide-canvas)
view of Mathematics needed a demanding and relatively mature mathematical background, which
was often missing in average graduate students at that time, and many of them had some difficulty
in keeping up with KRP’s zeal and intensity.

Under the supervision of C. R. Rao, KRP completed his Ph.D. dissertation entitled “Some
problems of ergodic theory and information theory” in 1962 and started a career in I.S.I. itself.
After a tradition instituted by the visionary founder of I.S.I., P.C. Mahalanobis, many distinguished
Statisticians and Mathematicians from the world over visited I.S.I.. Professor A. N. Kolmogorov,
the founder of modern theory of probability and a great mathematician, visited I.S.I. in 1962 and
KRP was deputed to accompany and guide him during his stay in India. This led to KRP visiting
Kolmogorov for a year during 1962-63 in the Steklov Mathematics Institute in Moscow. Though
life in Moscow at that time was quite difficult for a vegetarian KRP from a warm tropical country,
he was very happy about having the opportunity of attending the seminars of great minds like those
of E.B. Dynkin, I.M. Gelfand and others. When KRP returned from Moscow in 1963, Varadarajan
had also returned from the United States. Though Varadhan left for the United States in 1963,
this period (1962-65) saw a burst of academic activities among the “famous four”, resulting in 5-6
top-class publications, culminating with the “Representations of complex semi-simple Lie groups
and Lie algebras” by KRP, Ranga Rao and Varadarajan (Ann. Math. (2) 25, 1967). It is in this
period, 1964-65, that Varadarajan started giving a course of lectures on “Mathematics of Quantum
Mechanics” (now available as book in Springer-Verlag publications, 1984), which KRP attended,
and this may have sown the germ of interest in this area in KRP’s mind. This interest stayed with
KRP till his last days and may have been instrumental in my getting together with him.

Another landmark event happened to KRP: He got married to Shyamala (Shyama to friends) in
1965 and left for the United Kingdom. After several years of teaching in the Universities of Sheffield
(1965-68) and of Manchester (1968-1970), he decided to return to India for good and following a

This obituary is being co-published with Current Science. It will appear there in the 10th August issue.

P 24 O



5. Kalyanapuram Rangachari Parthasarathy

few years in the University of Bombay (1970-73), in the Indian Institute of Technology, Delhi (1973-
76), he settled in the new campus of the Delhi Centre of I.S.I., from which he superannuated in
1996. There he continued as Professor Emeritus till his last days. His celebrated book “Probability
Measures on Metric Spaces” (AMS 1967, reprinted 2005) was written during this period as was also
the beautifully-presented more basic book “Introduction to Probability and Measures” (Macmillan
1977, Hindustan Book Agency 2005). I learnt my basics in Probability theory from that book and
sometimes used theorems from this book to prove results in Operator theory.

The study of Central Limit theorems and of infinitely divisible probability distributions on
topological spaces or groups were of great interest to the probabilists during the 60-70’s and KRP
was no exception; he wrote several important articles on these topics. In structures admitting
some kind of continuous convolution as in the case of groups (much later quantum groups as
well), it was known from KRP’s (as well as many other probabilists’) work that infinitely divisible
distributions can be canonically associated with one-parameter semigroups of maps on a suitable
space of functions on the structures. On the other hand, KRP’s studies and investigations in the
underlying structures arising in Quantum Mechanics (including his mastery of Mackey’s theory of
induced representations and the systems of imprimitivity) led to the natural query of the possibility
of dropping the underlying space/groups in the space of functions and replace them by some kind of
∗-algebras in a Hilbert space, which is often the vessel carrying the description of quantum systems.
This, “large canvas”, more formally the construction of Markov Processes over ∗-algebras in a
Hilbert space, occupied KRP and many of his collaborators for nearly four decades. This process
of replacing classical objects like “the commutative family of functions on a suitable set” by non-
commutative family of “operators in a suitable Hilbert space” would become (at the hands of KRP
and Robin L. Hudson), the central tool in creating new non-commutative family of stochastic
processes, driving the action of a one-parameter semigroup of (completely positive and unital)
maps on a ∗-algebra in a Hilbert space. As is often the case, KRP first looked at finite dimensional
case, in which classical observables (random variables) were mapped into the set of real diagonal
matrices there, while the quantum ones went into the set of all Hermitian matrices. In this
setup, the classical processes driven by classical Markov semigroups were constructed naturally by
Fokker-Planck type equation associated with stochastic matrices. This point of view allows a quick
natural generalization to the more interesting infinite-dimensional case, reinforcing the thought,
held strongly by KRP and many others, that the Quantum theory is fundamentally a theory of
probability, albeit of non-Kolmogorovian variety.

This gradual, yet striking change in the point of view in the research canvas of KRP took
place over the years (1972-onwards) via the paper on the representation of current groups and the
Araki-Woods embedding theorem (coauthored with K. Schmidt, Acta Math. 128 (1972)) and the
lecture note on positive definite kernels, continuous tensor products and central limit theorems of
probability theory (with K. Schmidt. LNM 272, Springer, 1972). The continuous tensor product
of an indexed family of Hilbert spaces {Hs,t| 0 ≤ s ≤ t ≤ ∞} , turned out to be the right vehicle to
incorporate, the semigroups driven by continuous–time quantum stochastic processes. After some
interesting interludes including attempts by KRP (with R.L. Hudson and P.D.F. Ion, in Comm.
Math. Phys. 83, 1982) on Feynman-Kac-like formulae, as time-orthogonal product integral, KRP
along with Hudson realized that the Fock–space representation of the unitary Weyl-Segal system
on L2(R+) provides an ideal setup to implement the continuous tensor product structure explicitly
and develop a nice kind of stochastic calculus, and the rest is history.

At about this time in January 1982, as a part of the Golden Jubilee celebrations of the I.S.I.,
a conference on the “Theory and Applications of Random Fields” was organized in the Bangalore
Centre of the I.S.I., and a large number of luminaries in Probability theory, including E.B. Dynkin,
T. Hida, P.A. Meyer, S. Watanabe, K. Bichteler, J. Jacod lectured there. Both KRP and Hudson,
of course, were there and they talked about their nascent theory and the quantum Ito-table (with
the annihilation and creation processes only) made its appearance, implicitly, there for the first
time.

This non-commutative calculus led to the beautiful paper “Quantum Ito’s formula and stochas-
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tic evolutions” (Comm. Math. Phys. 93, 1984) and to a more elaborate and abstract presentation
of the theory in the lectures of KRP in 1988 in the Delhi Centre of ISI. These lectures of KRP
appeared in 1992 as a monograph “An Introduction to Quantum Stochastic Calculus”. Birkhauser,
1992 and are presented in a delectable style with the right kind of mixture of abstract ideas and
their concrete manifestations. Suitable linear combinations of the mutually conjugate position and
momentum processes lead to the annihilation and creation processes and the now familiar com-
plete Quantum Ito table appears for the first time, which was incomplete in earlier attempts in the
absence of the “Conservation or Number process”. In fact, this process makes its appearance in
the simple example of the “second quantization” of an operator of multiplication by an “adapted
family” of function

{
fX [0,t]| 0 ≤ t ≤ ∞, f ∈ nL2(R+)

}
. These names led KRP, in his book to com-

pare them with the trilogy of Gods in Hindu scriptures: Shiva (the annihilator), Brahma (the
creator), and Vishnu (the conservator). This “completion” led KRP and Hudson to formulate and
solve quantum stochastic differential equation (qsde) with bounded operator-valued coefficient in
the Hilbert tensor-product of the initial Hilbert space (in which the operator-coefficients act) and
the Fock space mentioned earlier. The unitarity of the solution, giving the quantum stochastic
evolution of the Hilbert space vectors are of great importance (just as in the so-called ‘Schrodinger
picture’ of ordinary quantum mechanics) and the authors solved this problem completely for the
case of constant bounded operator coefficients. The book “Quantum Probability for Probabilists”
by P. A. Meyer appeared soon after in 1992 and was written in a style perhaps closer to that of
classical probabilities. Curiously, Robin Hudson earlier and Accardi, Frigerio and Lewis in their
article “Quantum Stochastic Processes” (Publ. RIMS, Kyoto Univ. 18, 1982) had emphasized
the corresponding “Heisenberg picture”, obtained by conjugating an observable (or any bounded
operator) in the initial Hilbert space by these unitaries mentioned above. This looked like an
aesthetically satisfactory situation in the development of the theory.

However, for the theory to be more useful to serve as a possible model to describe “dissipative
phenomena in Quantum Physical systems”, two further generalizations were needed: (i) a suitable
class of unbounded operator coefficients, mentioned above, needs to be admitted in the analysis
of the qsde and (ii) “the stochastic or the noise” part, as modeled in the Fock space over L2(R+),
needed to be expanded in variety.

In the same paper (CMP, 1984) KRP and Hudson also showed that the two abelian ∗-algebras
generated by functions of classical Brownian motion and by classical Poisson processes are sub-
algebras of the non-abelian algebra of all bounded operators in the Fock space and classical notions
of “independence” in each of these cases are subsumed by the tensor-independence in the new
structure. Thus, in a sense, the tensor-independence used in the so called Hudson-Parthasarathy
(or HP for short) stochastic calculus is the simplest generalization of the concept of independence in
classical probability; the one farthest from the classical independence is that of “free independence”
introduced by Voiculescu. Thus, the germ of idea in KRP’s mind that quantum theory is a new
kind of theory of Probability grew in four decades into a mature tree having more than one ‘colour’
of probability theories, giving rise to multiple possible choices of ‘noises’, relating to the question(ii)
raised above. The partial resolution of the mainly analytical question in (i) took another decade
or so to be sorted out.

In this way, the Delhi Centre of the I.S.I. during 1980-2000 (2 decades) became one of the major
centres (with KRP as the driving force) in the world for research and dissemination of quantum
probability theory. Just as it happened during the younger days of KRP in I.S.I., Kolkata, many
international researchers visited I.S.I., Delhi regularly. The list includes Professors T. Hida, Robin
Hudson, Wilhelm von Waldenfels, P.A. Meyer, L. Accardi, and Professors V.P. Belavkin, Martin
Lindsay, F. Fagnola, S. Attal, N. Obata, M. Schurmann, U. Franz, and many others of the younger
generation.

All these visits, back and forth, fostered all-round collaborations not only with KRP, but also
amongst the whole group of researchers including students; the world of quantum probability,
at the end of the millennium, grew to be of significant strength. It was at the beginning of this
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period of excitement and growth that Prof. Accardi, along with a few others formed an association,
which came to be named “Association for QPIDA (Quantum Probability and Infinite Dimensional
Analysis)” of which KRP was the first president. Furthermore, this association became quite
active in holding annual conferences all over the world; several in the universities of Heidelberg and
of Greifswald (Germany), Oberwolfach Institute (Germany), Levico (Italy), Nottingham (U.K.),
Marseilles (France), Universities of Columbia, N. Y., and Ohio State University (USA), Oxaca
(Mexico), Chungbuk and Yeosu (South Korea), Kuantan (Malaysia) and of course, Delhi and
Bangalore Centres of the I.S.I.. Of these, the one in 1990 in I.S.I. Delhi had KRP in his prime,
both in academic and organizational fronts, and in all these conferences the research-talks on the
HP-calculus formed a major component.

As one would expect for such a distinguished personality, KRP won many laurels and awards
in his career - the Shanti Swarup Bhatnagar award (1977), the Ramanujan medal of the Indian
National Science Academy (INSA, 2013) for lifetime achievement in Mathematical Sciences, TWAS
award in Mathematics (1996), and the fellowships of INSA, TWAS and the Indian Academy of
Sciences, Bangalore. Furthermore, he received Doctorate Honoris-causa from the Nottingham
Trent University, UK and from the I.S.I..

I came to the Delhi Centre of I.S.I. in late 1978 and till mid–1985, was mostly occupied
with pursuing my earlier interests in “Spectral Theory of Schrödinger Operators”, though I had
already collaborated with KRP in three articles, in one of which entitled “A Random Trotter-Kato
Product Formula” (in Statistics and Probability, Essays in honor of C.R. Rao, North-Holland,
1982), the question of unitary stochastic evolutions was discussed with only classical Brownian
‘noise’. Our offices were essentially next door to each other and KRP would often drop in to pose
one problem after another - his enthusiasm was infectious and I was soon drawn into a dance
of ideas - computations - discussions, leading to many jointly authored articles of which I shall
mention only two. The earlier attempts by Hudson and Lindsay for a martingale representation
theorem in non-Fock case (in which the conservation process does not appear) led KRP and me
(Jour. Funct. Anal. 67, 1986) to investigate a general class of bounded regular martingales in
Fock space which admits quantum-stochastic integral representation in terms of all three processes,
viz. annihilation, creation and conservation processes. Another idea of Hudson to characterize a
“quantum stop time” as a non-negative self-adjoint operator in Fock space whose spectral family
{S(t)| t ≥ 0} is adapted with respect to the Fock space tensor-filtration, led KRP and me (Prob.
Theory and Related Field, 75, 1987) to create a theory of stopped Weyl processes and prove the
strong Markov property of the Fock space. By the end of the millennium, my interests moved more
towards non-commutative geometry and my move to Kolkata and then to Bangalore reduced my
collaboration with KRP though we would often discuss over phone and exchange newly written
articles.

After more than two decades of development in the stochastic calculus, there was a bit of lull
in this area. At the turn of the new millennium the restless creativity of KRP made him turn to
his existing knowledge of classical information theory and use it in the newly emerging fields of
the quantum information theory. As was often the case with KRP, after he (by himself alone or
along with few others) has established a substantial body of mathematical knowledge in an area,
he would write a book on the subject and this new area was no exception. His book “Coding
Theorems of Classical and Quantum Information Theory” (Hindustan Book Agency, 2013) was
written in his inimitable style.

For more than 2 decades, KRP and I lived in the campus of I.S.I. Delhi as (vertical) neighbours
and I had seen at first hand his ideal of “simple living and high thinking”, his sense of discipline,
and his dedication to Mathematics. He was also a scholar - would often recite Sanskrit verses,
learnt in childhood. KRP had an impish sense of humour as well - at the ‘drop of a hat’, he could
reproduce the speeches of P.C. Mahalanobis and of some of the political leaders of erstwhile Soviet
union, complete with appropriate inflexions!

In the last five years or so, KRP started losing effectively his eyesight and yet, true to his
nature, took up detailed study and analysis of the well-investigated area of quantum Gaussian
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states. But his ‘large-canvas vision’ brought a great sense of clarity and completeness to this whole
area, leading to several beautiful articles (in collaboration with much younger collaborators).

I guess it is fair to say that KRP could achieve so much not only because of his intellectual
heights, but also because of the immense, patient support he received generously from his better
half, Shyama. They had two sons Ramesh and Harish; and we have fond memories of many
get-togethers and of the wonderful musical renderings by Ramesh in the Indian Flute.

Unlike many other mathematicians-some ex-colleagues of mine from the I.S.I., some my profes-
sional friends-KRP’s breadth of mathematical interest was staggeringly large and that suited me
very well. In my view, he was temperamentally a bit of a mathematical physicist like me - impa-
tient in solving a mathematical problem before jumping onto another one, both possibly having
origin in some distant physics question and then bringing to bear on it whatever “imagination and
mathematical artillery” that may be needed. It is a unique privilege - for me to have known and
worked closely with such a mathematical giant, and for the generations of Indian mathematical
community to have him walk amongst them.

□ □ □
6. A Tribute to Dr Mangala Narlikar

S. A. Katre
Bhaskaracharya Pratishthana, Pune, Email: sakatre@gmail.com

We are sorry to mark the passing away of Dr. Mangala Narlikar
on 17th July 2023 in Pune, at the age of 80 years, following a battle
with Cancer.

Born on 17th May 1943, Mangala Narlikar did her M.A. in Math-
ematics from the University of Mumbai in 1964, securing 1st Rank
and earning Chancellor’s Gold medal. Following that she joined the
Tata Institute for Fundamental Research (TIFR), Mumbai and pur-
sued research in mathematics. In 1966 she married the well-known
Cosmologist Prof. Jayant Naralikar, who later founded IUCAA.

This led in particular to her moving to Cambridge, England, where she was during 1966 -72.
While in Cambridge she actively engaged herself in teaching of mathematics.

Returning to Mumbai with her husband in 1972, she resumed research in mathematics and
did her Ph.D. in 1981, under the guidance of Prof. K. Ramachandra, TIFR, in Analytic Number
Theory. After Ph.D. she continued at TIFR as Pool Officer, from 1982 to 1985, during which she
also taught advanced level courses at the University of Mumbai, alongside pursuing research in
mathematics. Unfortunately, around then she had her first tryst with cancer. Notwithstanding
the debilitating effects of the disease, she continued valiantly to be an active academic and in
particular continued her research, resulting in publications in international journals. With the
founding of IUCAA, the Narlikars moved to Pune, where they were to settle. At Pune, during 1989-
2010 she taught from time-to-time MSc courses such as Advanced Calculus, Complex Analysis, in
University of Pune, Bhaskaracharya Pratishthana and Abeda Inamdar College. Alongside, she also
got interested in mathematics education in schools, an area in which she made stellar contributions
in the last decades, especially through her work for Bal Bharati in the text book committee
as member and Chairperson. She was very active in community work for the underprivileged,
including mathematics coaching for school girls in slum areas in Pune and has written several
books facilitating better understanding of mathematics at the school level. She also contributed
several articles on mathematics in Science Age, to create interest in mathematics among lay people.

With her combination of human and intellectual qualities, she was an inspiring figure for
fellow colleagues and students. As a trustee of Bhaskaracharya Pratishthana, she supported many
activities of Bhaskaracharya Pratishthana, such as Bhaskaracharya Talent Search Competition
(BMTSC) at the High School Level for the last several years. The teachers and students of
mathematics will no doubt sorely miss her in the years to come.

□ □ □
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7. Blaise Pascal - Legacy of 400 Years
V. O. Thomas

The M. S. University of Baroda, Vadodara. Email: votmsu@gmail.com

Devbhadra V. Shah
Veer Narmad South Gujarat University, Surat. Email: drdvshah@yahoo.com

This year ‘2023’ marks the 400th Birth Anniversary of one of the
most influential mathematicians in the history - Blaise Pascal.
Blaise Pascal was born on June 19, 1623 at Clermont in Auvergne.
His father Etienne Pascal was president of the court of aids at Cler-
mont. His mother, Antoinette Begone died when Pascal was four
years old. He had two sisters Madame Perier and Jaqueline.
At the age of seven Pascal moved from Clermont to Paris with his
father and sisters. Étienne, who was respected as a mathematician,
devoted himself henceforth to the education of his children. At a
tender age of 14, Pascal began participating in the meetings of a
mathematical academy in Paris. He learned different languages
from his father, Latin and Greek in particular. Blaise was very

brilliant but having a weak physique. Because of this reason, his father prohibited Pascal from
studying mathematics which needs more effort and strain. But this aroused in him curiosity
towards mathematics.
He began to study geometry by himself and went on to experiment with geometrical figures. He
proved that the sum of angles of a triangle is a straight angle. Realizing the talent of his son, Pascal
senior gave him a copy of Euclid’s Elements. Before the age of sixteen, Pascal proved theorems
in geometry. A special form of the theorem can be described as follows: Let P, Q, R be any three
distinct points on a line L and P′, Q′, R′ be three distinct points on another line L′. Join P to Q′

and P′ to Q, Q to R′ and Q to R′ and finally R to P′ and R′ to P. Then the two lines in each of
the pairs intersect and the points of intersection lie on a straight line.
Another important contribution of Pascal to geometry is related to conic sections. Consider any
conic section, say for definiteness, ellipse. Mark on it six points A, B, C, D, E, F and join them by
straight lines. Then the pairs of sides AB and DE, BC and EF, and CD and FA are pairs of
opposite sides. Extending the opposite sides, they will intersect at a point and there are three
such points G, H, K. These three points lie on a straight line (See Figure 1). This is called Pascal’s
theorem and the hexagon ADBFCE is called a mystic hexagon. In 1640, at the age of 16 he wrote
an important short work on projective geometry, “Essay on Conics”.

Figure 1: Pascal’s theorem Figure 2: Pascaline

The young man’s work, which was highly successful in the world of mathematics, aroused the envy
of no less a personage than the great French Rationalist and mathematician René Descartes, who
was twenty seven years older than Blaise.
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Between 1642 and 1644, Pascal conceived and constructed a calculating device, the Pascaline, to
help his father, who was then a tax collector for the French city of Rouen, in his tax computations.
This mechanical calculator was able to add and subtract and used a numerical wheel with movable
dials. Pascal continued to refine and improve his calculator for ten years, although his calculator
was not a commercial success. However, The computer language Pascal is named after him in
recognition of his early computing machine.
During the 1640’s Pascal contributed to hydrostatics. He tested the theories of Galileo and Evan-
gelista Torricelli (an Italian physicist who discovered the principle of the barometer). To do
so, he reproduced and amplified experiments on atmospheric pressure by constructing mercury
barometers and measuring air pressure, both in Paris and on the top of a mountain overlooking
Clermont-Ferrand. In the course of his experiments, he invented the syringe and the hydraulic
press (see Figures 3 and 4) an instrument based upon the principle that became known as Pascal’s
principle (Pascal’s law) which states that a pressure change at any point in a confined incom-
pressible fluid is transmitted throughout the fluid such that the same change occurs everywhere.
His publications on the problem of the vaccum (1647-48) added his reputation. Thus Pascal had
significant contribution to physics in the field of fluid mechanics and pressure. In honour of his
contribution to physics, a name Pascal has been given to SI unit of pressure.

Figure 3: Hydraulic press Figure 4

Pascal wrote Traité du triangle arithmétique in 1654, which was was published posthumously
in 1665, in which he constructed ‘arithmetic triangle’, now famously known as Pascal’s triangle
(see Figure 5). This triangle he used in problems of combinatorial analysis and the theory of

Figure 5

probability. In the triangle, the numbers in any row
after the first two are obtained by adding two num-
bers directly above it. The number in the nth row
represents the coefficients of the binomial expansion
of (a+ b)n. The number of n things taken r at a time
which Pascal correctly stated to be n!/r!(n − r)! in
the present notation. The notation n! was intro-
duced in 1808 by Christian Kramp of Strasbourg.
The mathematical theory of probability was founded
by Pascal and Fermat. Originally it was applied to
gambling problems. Suppose two players want to
finish a game early, given the current circumstances
of the game, they want to divide the stake fairly
based on the chance of winning the game from that
point. The notion of expected value was introduced

from this discussion.
Pascal’s last mathematical work was on cycloid. This curve is formed by a point on the circumfer-
ence of a circle while it is rolling along a straight line. In his effort to create a perpetual motion
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machine, Pascal inadvertently devised the now well-known gambling device, the roulette wheel.
Later in life, he wrote his two most famous works, the “Lettres provinciales” and the “Pensées”,
showing his religious views. They remain Pascal’s best-known legacy, and he is usually remembered
today as one of the most important authors of the French Classical Period and one of the greatest
masters of French prose, much more than for his contributions to mathematics.
Throughout his life, Pascal was in weak health, especially after the age of 18. On 19 August 1662,
Pascal went into convulsions and died. His last words being ‘May god never abandon me’. He was
buried in the cemetery of Saint-Etienne-du-Mont in Paris.
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□ □ □

International Mathematical Olympiad 2023
India Secures 9th Spot with Six Medals

Six-member Indian team won six medals - two gold, two silver, and two bronze at the 64th

International Mathematical Olympiad (IMO) 2023, which was held in Japan’s Chiba city
from July 2 to July 13. The team finished ninth out of the 112 countries that competed.
The gold medal was won by Atul Shatavart Nadig and Arjun Gupta, who both scored 37
points. Ananda Bhaduri and Siddharth Choppara grabbed silver with 29 points apiece,
while Adhitya Mangudy and Archit Manas won bronze with 22 and 20 points, respectively.

This is the fourth time the Indian team has finished in the top 10. According to reports,
India has finished seventh in 1998, seventh again in 2001, and ninth in 2002.

The Indian team was joined by Prithwijit De of the Homi Bhabha Centre for Science Ed-
ucation in Mumbai, Sahil Mhaskar of the Chennai Mathematical Institute, Anant Mudgal
of the University of California in the United States, and Pranjal Srivastava of the Mas-
sachusetts Institute of Technology (MIT) in the United States.

Sahil represented India at IMO 2005, whereas Anant represented India at IMO 2015, 2016,
2017, and 2018. While Pranjal attended the IMO 2018, IMO 2019, IMO 2021, and IMO
2022. The Homi Bhabha Centre for Science Education (HBCSE)-TIFR trains and selects
students for the Olympiads.

CONGRATULATIONS TO THE INDIAN TEAM
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8. Problem Corner
Udayan Prajapati

Mathematics Department, St. Xavier’s College, Ahmedabad
Email: udayan.prajapati@gmail.com

In the April 2023 issue of TMC Bulletin, we posed a problem from Number Theory for our read-
ers. We have received two solutions to that problem, one from Shrestha Suraiya, a student from
Dhirubhai Ambani International School, Grade 10, Mumbai is published here, the solution by the
problem proposer Prof. Rajendra Pawale, Mumbai University is also presented below.
Also, in this issue we pose a problem from Geometry for our readers. Readers are invited to email
their solutions to Udayan Prajapati (Udayan.prajapati@gmail.com), Coordinator, Problem Corner,
before 15th September, 2023. The most innovative solution will be published in the subsequent
issue of the bulletin.
Problem posed in the previous issue (Prof. Rajendra Pawale, Mumbai University, Mumbai):
Show that 3(3 + 22+n + 22+2n) is a perfect square only for n = 1.
Solution 1 by Shresth Suraiya: Suppose for contradiction that there exists an integer n > 1
for which the expression 3(3 + 22+n + 22+2n) is a perfect square.
So, 3(3 + 22+n + 22+2n) = a2 for some positive integer a.
So, 3|a2. Hence 3|a, so a = 3b for some positive integer b.
Therefore 3 + 22+n + 22+2n = 3b2. (⋆)

Note that b has to be strictly greater than 1.
So, 22+n(1 + 2n) = 3(b2 − 1), giving 22+n|3(b2 − 1). Hence 22+n|(b − 1)(b + 1). Since n > 1, both
b − 1 and b + 1 are even. However, gcd(b − 1, b + 1) = gcd(2, b + 1) = 2, so at most one of the
two can be divisible by 4. We now consider two cases.
Case 1. 4|(b − 1).
It follows that b+1

2 is odd. So, 21+n|(b − 1) ⇒ b = 21+nq + 1 for some positive integer q.
Substituting this in (⋆) , we get 3 + 22+n + 22+2n = 3(22+2nq2 + 22+nq + 1).
This implies 22+n(2n + 1) = 3 · 22+nq(2nq + 1) ≥ 3 · 22+n(2n + 1),
which is a contradiction.
Case 2. 4|(b + 1).
It follows that b−1

2 is odd, so 21+n|(b + 1). This implies b = 21+nq − 1 for some positive integer q.
Substituting this in (⋆), we get 3 + 22+n + 22+2n = 3(22+2nq2 − 22+nq + 1).
Hence 22+n(1 + 2n) = 3 · 22+nq(2nq − 1) ≥ 3 · 22+n(2n − 1).
Therefore 1 + 2n ≥ 3 · 2n − 3, which gives 2n ≤ 2 ⇒ n ≤ 1,
a contradiction to n > 1.
We conclude that there does not exist any positive integer other than n = 1, for which 3(3+ 22+n +
22+2n) is a perfect square.■
Solution 2 by Prof. Rajendra Pawale:
Suppose 3(3 + 22+n + 22+2n) = a2 for some positive integer a.
So a2 − (3 + 2n+1)2 = 22n+3. Thus(

a − (3 + 2n+1)
) (

a + (3 + 2n+1)
)
= 22n+3. Here, a > 3 + 2n+1.

Hence a − (3 + 2n+1) = 2α1 and a + (3 + 2n+1) = 2α2 , where α1 and α2 are positive integers such
that α2 > α1 > 0.
So 2α2 − 2α1 = 2(3 + 2n+1). Hence α1 ≥ 1. Hence 2α2−1 − 2α1−1 = (3 + 2n+1).
As the right hand side is an odd integer α1 = 1.
This implies 2α2−1 = 4 + 2n+1 or 2α2−3 = 1 + 2n−1.
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To maintain the parity on the both side n = 1.

Problem for this issue

Does there exist a scalene acute-angled triangle ABC with an altitude AD, an angle bisector
BE and a median CF such that AD, BE and CF are concurrent?

□ □ □

9. International Calendar of Mathematics Events
Ramesh Kasilingam

Department of Mathematics, IITM, Chennai
Email: rameshk@iitm.ac.in

August 2023

• August 7-11, 2023, International Algebra Conference in Philippines, Mactan, Cebu, Philip-
pines. sites.google.com/g.msuiit.edu.ph/international-algebra-conferen/

• August 23-27, 2023, The 6th Mediterranean International Conference Of Pure & Applied
Mathematics And Related Areas (MICOPAM2023), Université D’Evry Val D’Essonne, Paris,
FRANCE. micopam.com/

• August 24-27, 2023, 5th Canada-Mexico-US Conference In Representation Theory, Noncom-
mutative Algebra, And Categorification, Centre De Recherches Mathématiques (CRM), Mon-
treal, Canada. www.crmath.ca/en/activities/#/type/activity/id/3879

September 2023

• September 10-16, 2023, International Conference on Probability Theory and Number Theory
2023, Palanga, Lithuania. https://www.numbertheory.lt

• September 11-12, 2023, Bicocca, Milano, Italy: workshop “Geometria in Bicocca 2023”, at
the University of Milano-Bicocca. https://geometryinbicocca.matapp.unimib.it

• September 11-15, 2023, Dynamics and asymptotics in algebra and number theory, Bielefeld
University, Bielefeld, Germany. https://www.math.uni-bielefeld.de/daan23/

• September 11-15, 2023, Automorphic Forms and L-functions of higher rank, Queen Mary
University of London, UK. https://sites.google.com/view/automorphic-conference

• September 11-15, 2023, Algebra and Number Theory in Conversation (ANTIC), Manchester,
UK. https://sites.google.com/view/antic-manchester/

• September 11-15, 2023, School on “K3 surfaces, hyperkähler manifolds, and cubic fourfolds”,
at the Hausdorff Institute of Mathematics, Bonn, Germany.
https://www.him.uni-bonn.de/school-hyperk3s/

• September 11-15, 2023, Conference on Categorical Enumerative Geometry and Representa-
tion Theory, at EPFL, Lausanne, Switzerland.
https://sites.google.com/view/workshopepfl/ home/

• September 18-22, 2023, Conference on “Characteristic Classes and Singular Spaces”, at Kiel
University, Kiel, Germany.
https://www.math.uni-kiel.de/geometrie/de/essig/conferences /charclasses2023conf
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• September 26-29, 2023, “Joy in Algebraic Geometry. A conference in honor of Rick Miranda
for his 70th birthday”, at the Hotel, Bellavista, Levico Terme, Italy.
https://sites.google.com /view/joyinalgebraicgeometry23/home-page

October 2023

• September 30 - October 1, 2023, 2023 Maine-Quebec Number Theory Conference in Orono,
Maine, USA. https://mainequebecnt.github.io

• October 2-6, 2023, Conference on Arithmetic Algebraic Geometry on the occasion of Michael
Rapoportâ 75 birthday, at the University of Munster, Munster, Germany. https://www.uni-
muenster.de/MathematicsMuenster/de/events/2023/arithmetic-algebraic-geometry.shtml

• October 2-4, 2023, International Conference on Math Education and Technology (ICMET
2023), University of Aveiro, Aveiro, Portugal. https://icmet.web.ua.pt

• October 2-6, 2023, Workshop I: Quantum Algorithms for Scientific Computation, Institute
for Pure and Applied Mathematics (IPAM), Los Angeles, CA. www.ipam.ucla.edu/programs/
workshops/workshop-i-quantum-algorithms-for- scientific-computation/

• October 7-8, 2023, 2023 AMS Fall Central Sectional Meeting, Omaha, NE Creighton Univer-
sity, Omaha, NE. https://www.ams.org/meetings/sectional/2307_program.html

• October 11-12, 2023, The 2nd International Conference on The Evolution of Contemporary
Mathematics and their Impact in Science and Technology (ECMI-SciTech 2023), Brothers
Mentouri University of Constantine, Algeria.
http://ecmi2023.ammlabo.net/call_for_papers. html

• October 9-13, 2023, Workshop on “Vector bundles and combinatorial algebraic geometry”,
at Goethe University, Frankfurt, Germany.
https://sites.google.com/view/vectorbundlescomba lggeo/home

• October 13-15, 2023, TORA (Texas-Oklahoma Representations and Automorphic forms) XII,
University of Oklahoma, Norman, Oklahoma USA. https://math.ou.edu/ kmartin/toraxii

• Octrober 23-25, 2023, Bandoleros 2023, 7th Algebraic Geometry meeting, Department of
Mathematical Sciences of Politecnico di Torino, Italy.
https://sites.google.com/view/bandoler os2023/home-page

• October 25-27, 2023, Spring School On Symmetries of Differential & Difference Equations
and Their Applications, Stellenbosch, South Africa.
https://sites.google.com/view/spring-school-stellenbosch/home

• October 30-November 3, 2023, Seoul, South Korea: Conference on “Fano varieties, their
Geometry and Moduli”, at Korea Institute for Advanced Study.
http://events.kias.re.kr/h/FVGM/ ?pageNo=5054

• October 30-November 2, 2023, “Research School in Real Algebraic Geometry”, at SISSA and
ICTP, Trieste, Italy. https://sites.google.com/view/rsrag/home

□ □ □
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Financial Support for Mathematical Activities 
Society members and Institutional members of TMC are encouraged to 

organize Mathematical events of short duration in collaboration with TMC 
such as workshops, conferences, lecture series, TMC Lectures etc., for which a 
moderate financial support will be given by TMC in terms of honorarium to 

experts or for some specific purpose as per availability of funds.		
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Indian American Mathematician. Known for his contributions to Algebraic 
Geometry and a conjecture in finite group theory, known after him. He also, 

worked on: Commutative algebra, local algebra, valuation theory, the Cayley-
Hamilton theorem theory of functions of several complex variables, quantum 
Electrodynamics, circuit theory, invariant theory, combinatorics and robotics.

Shreeram Shankar Abhyankar (22 July 1930 - 02 Nov. 2012)

An Irish mathematician and Royal Astronomer of Ireland. Worked in both pure 
mathematics and mathematics for physics. He made important contributions 

to optics, classical mechanics and algebra. Known for his reformulation of 
Newtonian mechanics, now called Hamiltonian mechanics. He is best known 

as the inventor of quaternions and the Cayley-Hamilton. 

Sir William Rowan Hamilton (04 Aug. 1805 - 02 Sep. 1865)

An American mathematician and logician. Best known for his work in 
combinatory logic bringing much of the development. Also known for Curry’s 

paradox and the Curry-Howard correspondence, three programming 
languages named after him, Haskell, Brook & Curry, the concept of currying (a 
technique for transforming functions in mathematics and computer science).

Haskell Brooks Curry (12 Sep. 1900 - 01 Sep. 1982)
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